Skip to main content
Log in

Injury-induced asymmetric cell death as a driving force for head regeneration in Hydra

  • Review
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The freshwater Hydra polyp provides a unique model system to decipher the mechanisms underlying adult regeneration. Indeed, a single cut initiates two distinct regenerative processes, foot regeneration on one side and head regeneration on the other side, the latter relying on the rapid formation of a local head organizer. Two aspects are discussed here: the asymmetric cellular remodeling induced by mid-gastric bisection and the signaling events that trigger head organizer formation. In head-regenerating tips (but not in foot ones), a wave of cell death takes place immediately, leading the apoptotic cells to transiently release Wnt3 and activate the β-catenin pathway in the neighboring cycling cells to push them through mitosis. This process, which mimics the apoptosis-induced compensatory proliferation process deciphered in Drosophila larvae regenerating their discs, likely corresponds to an evolutionarily conserved mechanism, also at work in Xenopus tadpoles regenerating their tail or mice regenerating their skin or liver. How is this process generated in Hydra? Several studies pointed to the necessary activation of the extracellular signal-regulated kinase (ERK) 1–2 and mitogen-activated protein kinase (MAPK) pathways during early head regeneration. Indeed inhibition of ERK 1–2 or knockdown of RSK, cAMP response element-binding protein (CREB), and CREB-binding protein (CBP) prevent injury-induced apoptosis and head regeneration. The current scenario involves an asymmetric activation of the MAPK/CREB pathway to trigger injury-induced apoptosis in the interstitial cells and in the epithelial cells a CREB/CBP-dependent transcriptional activation of early genes essential for head-organizing activity as wnt3, HyBra1, and prdl-a. The question now is how bisection in the rather uniform central region of the polyp can generate this immediately asymmetric signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arvizu F, Aguilera A, Salgado LM (2006) Activities of the protein kinases STK, PI3K, MEK, and ERK are required for the development of the head organizer in Hydra magnipapillata. Differentiation 74:305–312

    Article  PubMed  CAS  Google Scholar 

  • Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25:161–170

    Article  PubMed  Google Scholar 

  • Bergmann A, Steller H (2010) Apoptosis, stem cells, and tissue regeneration. Sci Signal 3:re8

    Article  PubMed  Google Scholar 

  • Bode HR (1996) The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. J Cell Sci 109(Pt 6):1155–1164

    PubMed  CAS  Google Scholar 

  • Bosch TC (2009) Hydra and the evolution of stem cells. Bioessays 31:478–486

    Article  PubMed  Google Scholar 

  • Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24:525–549

    Article  PubMed  CAS  Google Scholar 

  • Broun M, Gee L, Reinhardt B, Bode HR (2005) Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132:2907–2916

    Article  PubMed  CAS  Google Scholar 

  • Browne EN (1909) The production of new hydranths in Hydra by the insertion of small grafts. J Exp Zool 7:1–37

    Article  Google Scholar 

  • Cardenas MM, Salgado LM (2003) Stk, the Src homologue, is responsible for the initial commitment to develop head structures in Hydra. Dev Biol 264:495–505

    Article  PubMed  CAS  Google Scholar 

  • Cardenas M, Fabila YV, Yum S, Cerbon J, Bohmer FD, Wetzker R, Fujisawa T, Bosch TC et al (2000) Selective protein kinase inhibitors block head-specific differentiation in Hydra. Cell Signal 12:649–658

    Article  PubMed  CAS  Google Scholar 

  • Chera S, Kaloulis K, Galliot B (2007) The cAMP response element binding protein (CREB) as an integrative hub selector in metazoans: clues from the Hydra model system. Biosystems 87:191–203

    Article  PubMed  CAS  Google Scholar 

  • Chera S, Buzgariu W, Ghila L, Galliot B (2009a) Autophagy in Hydra: a response to starvation and stress in early animal evolution. Biochim Biophys Acta 1793:1432–1443

    Article  PubMed  CAS  Google Scholar 

  • Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009b) Apoptotic cells provide an unexpected source of wnt3 signaling to drive Hydra head regeneration. Dev Cell 17:279–289

    Article  PubMed  CAS  Google Scholar 

  • Chera S, Ghila L, Wenger Y, Galliot B (2011) Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in Hydra head regeneration. Dev Growth Differ 53:186–201

    Article  PubMed  CAS  Google Scholar 

  • Cikala M, Wilm B, Hobmayer E, Bottger A, David CN (1999) Identification of caspases and apoptosis in the simple metazoan Hydra. Curr Biol 9:959–962

    Article  PubMed  CAS  Google Scholar 

  • David CN (2012) Interstitial stem cells in hydra: multipotency and decision-making. Int J Dev Biol. doi:10.1387/ijdb.113476cd

  • David CN, Plotnick I (1980) Distribution of interstitial stem cells in Hydra. Dev Biol 76:175–184

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Bergmann A (2008) Apoptosis-induced compensatory proliferation. The cell is dead. Long live the cell! Trends Cell Biol 18:467–473

    Article  PubMed  CAS  Google Scholar 

  • Galliot B, Chera S (2010) The hydra model: disclosing an apoptosis-driven generator of Wnt-based regeneration. Trends Cell Biol 20:514–523

    Article  PubMed  CAS  Google Scholar 

  • Galliot B, Ghila L (2010) Cell plasticity in homeostasis and regeneration. Mol Reprod Dev 77:837–855

    Article  PubMed  CAS  Google Scholar 

  • Galliot B, Miller D (2000) Origin of anterior patterning. How old is our head? Trends Genet 16:1–5

    Article  PubMed  CAS  Google Scholar 

  • Galliot B, Schmid V (2002) Cnidarians as a model system for understanding evolution and regeneration. Int J Dev Biol 46:39–48

    PubMed  Google Scholar 

  • Galliot B, Welschof M, Schuckert O, Hoffmeister S, Schaller HC (1995) The cAMP response element binding protein is involved in Hydra regeneration. Development 121:1205–1216

    PubMed  CAS  Google Scholar 

  • Galliot B, Miljkovic-Licina M, de Rosa R, Chera S (2006) Hydra, a niche for cell and developmental plasticity. Semin Cell Dev Biol 17:492–502

    Article  PubMed  CAS  Google Scholar 

  • Gauchat D, Kreger S, Holstein T, Galliot B (1998) Prdl-a, a gene marker for hydra apical differentiation related to triploblastic paired-like head-specific genes. Development 125:1637–1645

    PubMed  CAS  Google Scholar 

  • Graczyk PP (2002) Caspase inhibitors as anti-inflammatory and antiapoptotic agents. Progr med chem 39:1–72

    Article  CAS  Google Scholar 

  • Guder C, Pinho S, Nacak TG, Schmidt HA, Hobmayer B, Niehrs C, Holstein TW (2006) An ancient Wnt-Dickkopf antagonism in Hydra. Development 133:901–911

    Article  PubMed  CAS  Google Scholar 

  • Hassel M, Bridge DM, Stover NA, Kleinholz H, Steele RE (1998) The level of expression of a protein kinase C gene may be an important component of the patterning process in Hydra. Dev Gene Evol 207:502–514

    Article  CAS  Google Scholar 

  • Haynie JL, Bryant PJ (1977) The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Roux's Arch Dev Biol 183:85–100

    Article  Google Scholar 

  • Herold M, Cikala M, MacWilliams H, David CN, Bottger A (2002) Cloning and characterisation of PKB and PRK homologs from Hydra and the evolution of the protein kinase family. Dev Gene Evol 212:513–519

    Article  CAS  Google Scholar 

  • Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, Rothbacher U, Holstein TW (2000) Wnt signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407:186–189

    Article  PubMed  CAS  Google Scholar 

  • Hobmayer B, Jenewein M, Eder D, Eder M, Glasauer S, Gufler S, Hartl M, Salvenmoser W (2012) Stemness in hydra—a current perspective. Int J Dev Biol. doi:10.1387/ijdb.113426bh

  • Holstein TW, Hobmayer E, David CN (1991) Pattern of epithelial cell cycling in Hydra. Dev Biol 148:602–611

    Article  PubMed  CAS  Google Scholar 

  • Hua B, Tamamori-Adachi M, Luo Y, Tamura K, Morioka M, Fukuda M, Tanaka Y, Kitajima S (2006) A splice variant of stress response gene atf3 counteracts nf-kappab-dependent anti-apoptosis through inhibiting recruitment of CREB-binding protein/p300 coactivator. J Biol Chem 281:1620–1629

    Article  PubMed  CAS  Google Scholar 

  • Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 14:1262–1266

    Article  PubMed  CAS  Google Scholar 

  • Kaloulis K (2000) Molecular basis of morphogenetic events in hydra: study of the CREB and hedgehog pathways during budding and regeneration. In: Zoology and animal biology. University of Geneva, Geneva

    Google Scholar 

  • Kaloulis K, Chera S, Hassel M, Gauchat D, Galliot B (2004) Reactivation of developmental programs: the cAMP-response element-binding protein pathway is involved in Hydra head regeneration. Proc Natl Acad Sci U S A 101:2363–2368

    Article  PubMed  CAS  Google Scholar 

  • Khalturin K, Anton-Erxleben F, Milde S, Plotz C, Wittlieb J, Hemmrich G, Bosch TC (2007) Transgenic stem cells in hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Dev Biol 309:32–44

    Article  PubMed  CAS  Google Scholar 

  • Kondo S (1988) Altruistic cell suicide in relation to radiation hormesis. Int J Radiat Biol Relat Stud Phys Chem Med 53:95–102

    Article  PubMed  CAS  Google Scholar 

  • Kuranaga E, Miura M (2007) Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 17:135–144

    Article  PubMed  CAS  Google Scholar 

  • Lasi M, David CN, Bottger A (2010) Apoptosis in pre-bilaterians: Hydra as a model. Apoptosis 15:269–278

    Article  PubMed  CAS  Google Scholar 

  • Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L, Law L, Schmidt HA, Ozbek S et al (2009) Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 330:186–199

    Article  PubMed  CAS  Google Scholar 

  • Lenhoff HM (1991) Ethel Browne, Hans Spemann, and the discovery of the organizer phenomenon. Biol Bull 181:72–80

    Article  Google Scholar 

  • Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3:ra13

    Article  PubMed  Google Scholar 

  • MacWilliams HK (1983) Hydra transplantation phenomena and the mechanism of Hydra head regeneration. II. Properties of the head activation. Dev Biol 96:239–257

    Article  PubMed  CAS  Google Scholar 

  • Manuel GC, Reynoso R, Gee L, Salgado LM, Bode HR (2006) Pi3k and ERK 1–2 regulate early stages during head regeneration in Hydra. Dev Growth Differ 48:129–138

    Article  PubMed  CAS  Google Scholar 

  • Martin FA, Perez-Garijo A, Morata G (2009) Apoptosis in Drosophila: compensatory proliferation and undead cells. Int J Dev Biol 53:1341–1347

    Article  PubMed  Google Scholar 

  • Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609

    Article  PubMed  CAS  Google Scholar 

  • Miljkovic-Licina M, Chera S, Ghila L, Galliot B (2007) Head regeneration in wild-type Hydra requires de novo neurogenesis. Development 134:1191–1201

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki K, Sano H, Kobayashi S, Nishimiya-Fujisawa C, Fujisawa T (2000) Expression and evolutionary conservation of nanos-related genes in Hydra. Dev Gene Evol 210:591–602

    Article  CAS  Google Scholar 

  • Murate M, Kishimoto Y, Sugiyama T, Fujisawa T, Takahashi-Iwanaga H, Iwanaga T (1997) Hydra regeneration from recombined ectodermal and endodermal tissue. II. Differential stability in the ectodermal and endodermal epithelial organization. J Cell Sci 110:1919–1934

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Tsiairis CD, Ozbek S, Holstein TW (2011) Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer. Proc Natl Acad Sci U S A 108:9137–9142

    Article  PubMed  CAS  Google Scholar 

  • Nishimiya-Fujisawa C (2012) Germline stem cells and sex determination in Hydra. Int J Dev Biol. doi:10.1387/ijdb.123509cf

  • Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131:5591–5598

    Article  PubMed  CAS  Google Scholar 

  • Ratcliff M (2012) The Trembley effect or the birth of marine zoology. Int J Dev Biol. doi:10.1387/ijdb.123520mr

  • Reinhardt B, Broun M, Blitz IL, Bode HR (2004) HyBMP5–8b, a BMP5–8 orthologue, acts during axial patterning and tentacle formation in Hydra. Dev Biol 267:43–59

    Article  PubMed  CAS  Google Scholar 

  • Reiter S, Crescenzi M, Galliot B, Buzgariu W (2012) Hydra, a versatile model to study the homeostatic and developmental functions of cell death. Int J Dev Biol. doi:10.1387/ijdb.123499sr

  • Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the jnk and the wingless signaling pathways. Dev Cell 7:491–501

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7:873–884

    Article  PubMed  Google Scholar 

  • Sarras MP, Jr. (2012) A review of extra-cellular matrix (ECM) in Hydra: components, structure, biogenesis and function of the ECM as related to regenerative processes, pattern formation and cell differentiation. Int J Dev Biol. doi:10.1387/ijdb.113445ms

  • Shimizu H (2012) Transplantation analysis of developmental mechanisms in hydra. Int J Dev Biol. doi:10.1387/ijdb.123498hs

  • Simon A, Berg D, Kirkham M (2009) Not lost in translation sensing the loss and filling the gap during regeneration. Semin Cell Dev Biol 20:691–696

    Article  PubMed  Google Scholar 

  • Spemann H, Mangold H (1924) Über die induktion von embryonalanlagen durch implantation artfremder organisatoren. Wilhem Roux’s Arch Entw Mech 100:599–638

    Google Scholar 

  • Steele RE (2002) Developmental signaling in hydra: what does it take to build a “simple” animal? Dev Biol 248:199–219

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Wanek N (1993) Genetic analysis of developmental mechanisms in Hydra. XXI. Enhancement of regeneration in a regeneration-deficient mutant strain by the elimination of the interstitial cell lineage. Dev Biol 160:64–72

    Article  PubMed  CAS  Google Scholar 

  • Technau U, Bode HR (1999) Hybra1, a brachyury homologue, acts during head formation in Hydra. Development 126:999–1010

    PubMed  CAS  Google Scholar 

  • Technau U, Holstein TW (1995) Head formation in Hydra is different at apical and basal levels. Development 121:1273–1282

    CAS  Google Scholar 

  • Teo R, Mohrlen F, Plickert G, Muller WA, Frank U (2006) An evolutionary conserved role of Wnt signaling in stem cell fate decision. Dev Biol 289:91–99

    Article  PubMed  CAS  Google Scholar 

  • Trembley A (1744) Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce, à bras en forme de cornes. Verbeck, Leiden

    Google Scholar 

Download references

Acknowledgments

I am grateful to Wanda Buzgariu, Simona Chera, and Osvaldo Chara for helpful comments. The work in our laboratory is supported by the Canton of Geneva, the Swiss National Science Foundation, the National Center of Competence in Research “Frontiers in Genetics,” the Human Frontier Science Program, and the Claraz Donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Galliot.

Additional information

Communicated by M. Martindale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galliot, B. Injury-induced asymmetric cell death as a driving force for head regeneration in Hydra . Dev Genes Evol 223, 39–52 (2013). https://doi.org/10.1007/s00427-012-0411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-012-0411-y

Keywords

Navigation