Skip to main content
Log in

Conservation of male-specific expression of novel phosphoprotein phosphatases in Drosophila

  • Short Communication
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In the genome of Drosophila melanogaster, there are 19 phosphoprotein phosphatase (PPP) catalytic subunit coding genes. Seven of the novel members of the gene family turned out to be Drosophila-specific. The expression and evolution of these genes was investigated in the present study. CG11597 is a recently evolved gene that is expressed during all stages of morphogenesis in D. melanogaster. In contrast, the transcription of PpD5, PpD6, Pp1-Y1, and Pp1-Y2 genes is restricted to the pupa and imago developmental stages and to the testis of the males, just as that of the previously characterized PpY-55A and PpN58A. With the exception of the Y-localized Pp1-Y1 and Pp1-Y2, the testis-specific phosphatase genes are expressed in X/0 males, while none of them are expressed in XX/Y females. The mRNA of PpD5, Pp1-Y1, and PpY-55A were detected in the developing cysts by in situ hybridization, in contrast with the PpD6 transcript that was found in the distal ends of elongating spermatids. The latter localization suggests post-meiotic expression. The comparison of PPP genes in five Drosophila species revealed that the sequence of the six testis-specific phosphatases changed more rapidly than that of the housekeeping phosphatases. Our results support the “faster male” hypothesis. On the other hand, the male-biased expression of the six genes remained conserved during evolution despite the fact that Pp1-Y1, Pp1-Y2, and PpD6 moved from autosomes to the Y chromosome. Interestingly, the PpD6 gene was found to be Y-linked only in Drosophila ananassae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Arbeitman MN, Furlong EM, Imam F, Johnson E, Null BH, Baker BS, Krasnow MA, Scott MP, Davis RW, White KP (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297:2270–2275

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CG, Mann DJ, Berndt N, Cohen PTW (1995) Drosophila PPY, a novel male specific protein serine/threonine phosphatase localized in somatic cells of the testis. J Cell Sci 108:3367–3375

    CAS  PubMed  Google Scholar 

  • Armstrong CG, Dombradi V, Mann DJ, Cohen PTW (1998) Cloning of a novel testis specific protein serine/threonine phosphatase, PPN 58A, from Drosophila melanogaster. Biochim Biophys Acta 1399:234–238

    CAS  PubMed  Google Scholar 

  • Berreau C, Benson E, Gudmannsdottir E, Newton F, White-Cooper H (2008) Post-meiotic transcription in Drosophila testis. Development 135:1897–1902

    Article  Google Scholar 

  • Carvalho AB, Dobo BA, Vibranovski MD, Clark AG (2001) Identification of five new genes on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci USA 98:13225–13230

    Article  CAS  PubMed  Google Scholar 

  • Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720

    Article  CAS  PubMed  Google Scholar 

  • Cohen PTW (1997) Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci 22:245–251

    Article  CAS  PubMed  Google Scholar 

  • Dimitri P, Caizzi R, Giordano E, Accardo MC, Lattanzi G (2009) Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma 118:419–435

    Article  CAS  PubMed  Google Scholar 

  • Gloor GB, Engels WR (1992) Single-fly DNA preps for PCR. Drosophila Inform Serv 71:148–149

    Google Scholar 

  • Goldberg J, Huang H, Kwon Y, Greengard P, Nair A, Kuriyan J (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376:745–753

    Article  CAS  PubMed  Google Scholar 

  • Koerich LB, Wang X, Clark AG, Carvalho AB (2008) Low conservation of gene content in the Drosophila Y chromosome. Nature 456:949–951

    Article  CAS  PubMed  Google Scholar 

  • Kókai E, Szuperák M, Alphey L, Gausz J, Ádám G, Dombrádi V (2006) Germ line specific expression of a protein phosphatase Y interacting protein (PPYR1) in Drosophila. Gene Expr Patterns 6:724–729

    Article  PubMed  Google Scholar 

  • Morrison DK, Murakami MS, Cleghon V (2000) Protein kinases and phosphatases in the Drosophila genome. J Cell Biol 150:15057–15062

    Article  Google Scholar 

  • Musters H, Huntly MA, Singh RS (2006) A genomic comparison of faster-sex, faster-X, and faster-male evolution between Drosophila melanogaster and Drosophila pseudoobscura. Mol Biol Evol 62:693–700

    CAS  Google Scholar 

  • Parsch J, Meiklejohn CM, Hauschteck-Jungen E, Hunziker P, Hartl DL (2001) Molecular evolution of the ocnus and janus genes in the Drosophila melanogaster species subgroup. Mol Biol Evol 18:801–811

    CAS  PubMed  Google Scholar 

  • Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL (2003) Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300:1742–1745

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Subramainain S, Kumar S (2004) Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21:36–44

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Vibranovszki MD, Lopes HF, Karr TL, Long M (2009) Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet 5:e1000731

    Article  Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA 95:3708–3713

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hambuch TM, Parsch J (2004) Molecular evolution of sex-biased genes in Drosophila. Mol Biol Evol 21:2130–2139

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sturgill D, Parisi M, Oliver B (2007) Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450:233–237

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Klyne G, Benson E, Gudmannsdottir E, White-Cooper H, Shotton D (2009) Flyted: the Drosophila testis gene expression database. Nucleic Acids Res 38:D710–D715

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund of Hungary (OTKA 060723). The authors are grateful to Dr. János Szabad (Department of Medical Biology, University of Szeged, Hungary) for supplying the mutant Drosophila strains and for helpful discussions. The participation of Mr. László Kovács (Department of Medical Chemistry, University of Debrecen, Hungary) in some of the RT-PCR experiments is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Dombrádi.

Additional information

Communicated by C. Desplan

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

ESM1 (DOC 94 kb)

Online Resource 2

ESM2 (PDF 5377 kb)

Online Resource 3

ESM3 (DOC 1187 kb)

Online Resource 4

ESM4 (DOC 7.97 mb)

Online Resource 5

ESM5 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ádám, C., Henn, L., Miskei, M. et al. Conservation of male-specific expression of novel phosphoprotein phosphatases in Drosophila . Dev Genes Evol 220, 123–128 (2010). https://doi.org/10.1007/s00427-010-0332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-010-0332-6

Keywords

Navigation