Skip to main content
Log in

The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea)

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

To examine the evolution of development and put it into a phylogenetic context, it is important to have, in addition to a model organism like Drosophila, more insights into the huge diversity of arthropod morphologies. In recent years, the malacostracan crustacean Porcellio scaber Latreille, 1804 has become a popular animal for studies in evolutionary and developmental biology, but a detailed and complete description of its embryonic development is still lacking. Therefore, the embryonic development of the woodlouse P. scaber is described in a series of discrete stages easily identified by examination of living animals and the widely used technique of nuclei staining on fixed specimens. It starts with the first cleavage of the zygote and ends with a hatched manca that eventually leaves the mother’s brood pouch. Classical methods like normal light microscopy, scanning electron microscopy and fluorescence microscopy are used, in addition to confocal LCM and computer-aided 3D reconstruction in order to visualise important processes during ontogeny. The purpose of these studies is to offer an easy way to define the different degrees of development for future comparative analyses of embryonic development amongst crustaceans in particular, as well as between different arthropod groups. In addition, several aspects of Porcellio embryonic development, such as the mouth formation, limb differentiations and modifications or the formation of the digestive tract, make this species particularly interesting for future studies in evolutionary and developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abzhanov A, Kaufman TC (1999a) Homeotic genes and the arthropod head: expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects. PNAS USA 96:10224–10229

    Article  CAS  PubMed  Google Scholar 

  • Abzhanov A, Kaufman TC (1999b) Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development 126:1121–1128

    CAS  PubMed  Google Scholar 

  • Abzhanov A, Kaufman TC (2000a) Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Development 127:2239–2249

    CAS  PubMed  Google Scholar 

  • Abzhanov A, Kaufman TC (2000b) Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev Genes Evol 210:493–506

    Article  CAS  Google Scholar 

  • Abzhanov A, Kaufman TC (2000c) Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol 227:673–689

    Article  CAS  PubMed  Google Scholar 

  • Abzhanov A, Kaufman TC (2004) Hox genes and tagmatization of the higher Crustacea (Malacostraca). In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. A.A. Balkema, Lisse, pp 43–71

    Google Scholar 

  • Alwes F (2008) Cell lineage studies in Crustacea—Aspects of the early development and germ layer formation in Meganyctiphanes norvegica (Malacostraca, Euphausiacea) and Bythotrephes longimanus (Cladocera, Branchiopoda). Humboldt-University Berlin. Ph.D. thesis, pp 109

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford, p 495

    Google Scholar 

  • Araujo PB, Quadros AF, Augusto MM, Bond-Buckup G (2004) Postmarsupial development of Atlantoscia floridana (van Name, 1940) (Crustacea, Isopoda, Oniscidea): sexual differentiation and size at onset of sexual maturity. Inv Repr Dev 45:221–230

    Google Scholar 

  • Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385:627–630

    Article  CAS  PubMed  Google Scholar 

  • Bitsch J (2001) The hexapod appendage: basic structure, development and origin. Ann Soc Entomol Fr (NS) 37:175–193

    Google Scholar 

  • Borradaile LA (1926) Notes upon crustacean limbs. Ann Mag Nat Hist Ser 9 17(98):193–213

    Google Scholar 

  • Boxshall GA (2004) The evolution of arthropod limbs. Biol Rev 79:253–300

    Article  PubMed  Google Scholar 

  • Boxshall GA, Jaume D (2009) Exopodites, epipodites and gills in crustaceans. Arth Syst Phyl 67:229–254

    Google Scholar 

  • Brena C, Liu PZ, Minelli A, Kaufman TC (2005) Abd-B expression in Porcellio scaber Latreille, 1804 (Isopoda: Crustacea): conserved pattern versus novel roles in development and evolution. Evol Dev 7:42–50

    Article  CAS  PubMed  Google Scholar 

  • Browne WE, Price AL, Gerberding M, Patel NH (2005) Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 42:124–149

    Article  PubMed  Google Scholar 

  • Brum PED, Araujo PB (2007) The manca stages of Porcellio dilatatus Brandt (Crustacea, Isopoda, Oniscidea). Rev Brasil Zool 24:493–502

    Google Scholar 

  • Bullar JF (1878) On the development of the parasitic Isopoda. Phil Trans Roy Soc London 169:505–521

    Article  Google Scholar 

  • Calman WT (1909) Crustacea. In: Lankester ER (ed) A treatise on zoology. Adam and Charles Black, London, p 346

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin, p 405

    Google Scholar 

  • Damen WGM, Saridaki T, Averof M (2002) Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Cur Biol 12:1711–1716

    Article  CAS  Google Scholar 

  • de Celis JF, Llimargas M, Casanova J (1995) Ventral veinless, the gene encoding the Cf1 a transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster. Development 121:3405–3416

    PubMed  Google Scholar 

  • Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development Suppl 104:147–160

    Google Scholar 

  • Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Sem Cell Dev Biol 8:379–390

    Article  CAS  Google Scholar 

  • Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. Crustacean issues 15. A.A. Balkema, Lisse, pp 95–133

    Google Scholar 

  • Dohrn A (1866) Die embryonale Entwicklung des Asellus aquaticus. Z Wiss Zool 17:221–278

    Google Scholar 

  • Drobne D (1997) Terrestrial isopods—a good choice for toxicity testing of pollutants in the terrestrial environment. Environ Toxicol Chem 16:1159–1164

    CAS  Google Scholar 

  • Franch-Marro X, Martin N, Averof M, Casanova J (2006) Association of tracheal placodes with leg primordia in Drosophila and implications for the origin of insect tracheal systems. Development 133:785–790

    Article  CAS  PubMed  Google Scholar 

  • Gerberding M (1994) Superfizielle Furchung, Bildung des Keimstreifs und Differenzierung von Neuroblasten bei Leptodora kindti Focke 1844 (Cladocera, Crustacea). Humboldt-University Berlin, Diploma thesis, pp 60

  • Goodrich AL (1939) The origin and fate of the entoderm elements in the embryogeny of Porcellio laevis Latr. and Armadillidium nasatum B.L. (Isopoda). J Morph 64:401–429

    Article  Google Scholar 

  • Gruner HE (1954) Über das Coxalglied der Peripoden der Isopoden. Zool Anz 152:312–317

    Google Scholar 

  • Gruner H-E (1965) Krebstiere oder Crustacea, V. Isopoda (erster Teil). In: Dahl F (ed) Die Tierwelt Deutschlands, 51. Teil. Gustav Fischer, Jena, p 149

    Google Scholar 

  • Gruner H-E (1966) Krebstiere oder Crustacea, V. Isopoda (zweiter Teil). In: Dahl F (ed) Die Tierwelt Deutschlands, 53. Teil. Gustav Fischer, Jena, p 230

    Google Scholar 

  • Gruner H-E (1993) Klasse Crustacea. In: Gruner H-E (ed) Lehrbuch der speziellen Zoologie. Gustav Fischer, Jena, pp 448–1009, Band 1: Wirbellose Tiere, 4. Teil: Arthropoda (ohne Insecta)

    Google Scholar 

  • Hahnenkamp L (1974) Die Bildung und Differenzierung des Keimstreifs der Asseln (Isopoda) und anderer höherer Krebse. Eine vergleichend-embryologische Studie. Berlin, Freie Universität. Hausarbeit für die erste (wissenschaftliche) Staatsprüfung, pp 180

  • Hames CAC, Hopkin SP (1989) The structure and function of the digestive system of terrestrial isopods. J Zool 217:599–627

    Article  Google Scholar 

  • Hansen HJ (1925) Studies on Arthropoda II. On the comparative morphology of the appendages in the Arthropoda. A. Crustacea. Gyldendalske Boghandel, Copenhagen, p 157

    Google Scholar 

  • Hartenstein V (1993) Atlas of Drosophila development. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, p 57

    Google Scholar 

  • Havemann J, Müller U, Berger J, Schwarz H, Gerberding M, Moussian B (2008) Cuticle differentiation in the embryo of the amphipod crustacean Parhyale hawaiensis. Cell Tissue Res 332:359–370

    Article  PubMed  Google Scholar 

  • Hejnol A, Scholtz G (2004) Clonal analysis of Distal-less and engrailed expression patterns during early morphogenesis of uniramous and biramous crustacean limbs. Dev Genes Evol 214:473–485

    CAS  PubMed  Google Scholar 

  • Hejnol A, Schnabel R, Scholtz G (2006) A 4D-microscopic analysis of the germ band in the isopod crustacean Porcellio scaber (Peracarida, Malacostraca)—developmental and phylogenetic implications. Dev Genes Evol 216:755–767

    Article  PubMed  Google Scholar 

  • Hickman VV (1937) The embryology of the syncarid crustacean, Anaspides tasmaniae. Paps Proc Roy Soc Tasmania 1–35

  • Hoese B (1981) Morphologie und Funktion des Wasserleitungssystems der terrestrischen Isopoden (Crustacea, Isopoda, Oniscoidea). Zoomorphology 98:135–167

    Article  Google Scholar 

  • Hoese B (1983) Structures and development of the lungs in Tylidae (Crustacea, Isopoda, Oniscidoidea). Zool Jb Anat 109:487–501

    Google Scholar 

  • Hoese B, Janssen HH (1989) Morphological and physiological studies on the marsupium in terrestrial isopods. Ital J Zool 4:153–173

    Google Scholar 

  • Holdich DM (1973) The midgut/hindgut controversy in isopods. Crustaceana 24:211–214

    Article  Google Scholar 

  • Jaume D (2001) A new atlantasellid isopod (Asellota: Aselloidea) from the flooded coastal karst of the Dominican Republic (Hispaniola): evidence for an exopod on a thoracic limb and biogeographical implications. J Zool 255:221–233

    Article  Google Scholar 

  • Kajishima T (1952) Experimental studies on the embryonic development of the isopod crustacean, Megaligia exotica Roux. Annat Zool Jap 25:172–181

    Google Scholar 

  • Knopf F, Koenemann S, Schram FR, Wolff C (2006) The urosome of the pan- and Peracarida. Cont Biol 75:1–21

    Google Scholar 

  • Kreissl S, Uber A, Harzsch S (2008) Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain. Dev Genes Evol 218:253–265

    Article  CAS  PubMed  Google Scholar 

  • Lauterbach KE (1975) Über die Herkunft der Malacostraca (Crustacea). Zool Anz 194:165–179

    Google Scholar 

  • Liu Y, Maas A, Waloszek D (2009) Early development of the anterior body region of the grey widow spider Latrodectus geometricus Koch, 1841 (Theridiidae, Araneae). Arthr Struct Dev 38:401–416

    Article  Google Scholar 

  • Manton SM (1928) On the embryology of a mysid crustacean, Hemimysis lamornae. Phil Trans Roy Soc London 216:363–463

    Article  Google Scholar 

  • McMurrich JP (1895) Embryology of the isopod Crustacea. J Morph 11:63–154

    Article  Google Scholar 

  • Morgan TH (1891) A contribution to the embryology and phylogeny of the pycnogonids. Stud Biol Lab J Hopkins Univ 5:1–76

    Google Scholar 

  • Nair SG (1956) On the embryology of the isopod Irona. J Dev Exp Morph 4:1–33

    Google Scholar 

  • Nusbaum J (1891) Beiträge zur Embryologie der Isopoden. Zool Anz 11:42–49

    Google Scholar 

  • Powell CVL, Halcrow K (1985) Formation of the epicuticle in a marine isopod, Idotea baltica (Pallas). J Crust Biol 5:439–448

    Article  Google Scholar 

  • Richter S, Scholtz G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39:113–136

    Article  Google Scholar 

  • Samter M (1900) Studien zur Entwicklungsgeschichte der Leptodora hyalina Lillj. Z Wiss Zool 68:169–260

    Google Scholar 

  • Schmidt C, Wägele JW (2001) Morphology and evolution of respiratory structures in the pleopod exopodites of terrestrial Isopoda (Crustacea, Isopoda, Oniscidea). Act Zool 82:315–330

    Article  Google Scholar 

  • Scholl G (1963) Embryologische Untersuchungen an Tanaidaceen (Heterotanais oerstedi Kröyer). Zool Jb Anat 80:500–554

    Google Scholar 

  • Scholtz G (1995) Expression of the engrailed gene reveals nine putative segment-anlagen in the embryonic pleon of the freshwater crayfish Cherax destructor (Crustacea, Malacostraca, Decapoda). Biol Bull 188:157–165

    Article  Google Scholar 

  • Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships, vol 24. Chapman & Hall, London, pp 317–332

    Google Scholar 

  • Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos—a comparative approach. Int J Dev Biol 40:211–220

    CAS  PubMed  Google Scholar 

  • Scholtz G, Wolff C (2002) Cleavage, gastrulation, and germ disc formation in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Cont Biol 71:9–28

    Google Scholar 

  • Schram FR (1986) Crustacea. Oxford Press, New York, p 606

    Google Scholar 

  • Shiino SM (1942) Studies on the embryology of Squilla oratoria de Haan. Mem Coll Sci Kyoto Imp Univ Series B 17:77–174

    Google Scholar 

  • Snodgrass RE (1952) A textbook of arthropod anatomy. Comstock, Ithaca, p 363

    Google Scholar 

  • Strömberg J-O (1965) On the embryology of the isopod Idotea. Ark Zool 17:421–467

    Google Scholar 

  • Strömberg J-O (1967) Segmentation and organogenesis in Limnoria lignorum (Rathke) (Isopoda). Ark Zool 20:91–139

    Google Scholar 

  • Strömberg J-O (1971) Contribution to the embryology of bopryid isopods; with special reference to Bopyroides, Hemiarthrus and Pseudione (Isopoda, Epicaridea). Sarsia 47:1–47

    Google Scholar 

  • Strömberg J-O (1972) Cyathura polita (Crustacea, Isopoda), some embryological notes. Bull Mar Sci 22:463–482

    Google Scholar 

  • Strus J, Drobne D, Licar P (1995) Comparative anatomy and functional aspects of the digestive system in amphibious and terrestrial isopods (Isopoda: Oniscidea). In: Alikhan MA (ed) Crustacean Issues 9; terrestrial isopod biology. A.A. Balkema, Rotterdam, pp 15–23

    Google Scholar 

  • Strus J, Klepal W, Repina J, Tusek-Znidaric M, Milatovic M, Pipan Z (2008) Ultrastructure of the digestive system and the fate of midgut during embryonic development in Porcellio scaber (Crustacea: Isopoda). Arthr Struct Dev 37:287–98

    Article  Google Scholar 

  • Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454:651–656

    Article  CAS  PubMed  Google Scholar 

  • Thiele J (1905) Betrachtungen über die Phylogenie der Crustaceenbeine. Z Wiss Zool 82:445–471

    Google Scholar 

  • Tomescu N, Craciun C (1987) Postembryonic ontogenetic development in Porcellio scaber (Crustacea, Isopoda). Pedobiologia 30:345–350

    Google Scholar 

  • Ungerer P, Wolff C (2005) External morphology of limb development in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Zoomorphology 124:89–99

    Article  Google Scholar 

  • Wägele JW (1992) Isopoda. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, Crustacea, vol 9. Wiley-Liss, New York, pp 529–617

    Google Scholar 

  • Walossek D (1999) On the Cambrian diversity of Crustacea. Crustaceans and the biodiversity crises. Proceedings of the 4th International Crustacean Congress. Brill, Amsterdam, pp 3–27

    Google Scholar 

  • Walossek D (2003) Cambrian ‘Orsten’-type arthropods and the phylogeny of Crustacea. The new panorama of animal evolution. Proceedings of the 18th International Congress of Zoology. Pensoft, Athens, pp 71–88

    Google Scholar 

  • Weygoldt P (1958) Die Embryonalentwicklung des Amphipoden Gammarus pulex pulex (L). Zool Jb Anat 77:51–110

    Google Scholar 

  • Whitington PM, Leach D, Sandeman R (1993) Evolutionary change in neural development within the arthropods: axogenesis in the embryo of two crustaceans. Development 118:449–461

    CAS  PubMed  Google Scholar 

  • Wilson GDF (2009) The phylogenetic position of the Isopoda in the Peracarida (Crustacea: Malacostraca). Arthr Syst Phyl 67:159–198

    Google Scholar 

  • Wolff C, Scholtz G (2008) The clonal composition of biramous and uniramous arthropod limbs. Proc R Soc B 275:1023–1028

    Article  PubMed  Google Scholar 

  • Zidar P, Van Gestel CAM, Strus J (2009) Single and joint effects of Zn and Cd on Porcellio scaber (Crustacea, Isopoda) exposed to artificially contaminated food. Ecotoxicol Environ Saf 72:2075–2082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank R. Mbacke for the help with collecting specimens and G. Drescher (Natural History Museum, Berlin) for the support in using the SEM. I also thank Kristen Panfilio and the two reviewers for the helpful advice and Greg Edgecombe for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Wolff.

Additional information

Communicated by S. Roth

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file. Mpg movie: Gut_peristaltic_stage15: The time lapse movie (normal light microscope) shows the peristaltic contractions of the midgut anlagen in a living Porcellio embryo (lateral view, anterior is left). Note that only the posterior part of the midgut is moving. While the midgut tubes elongate more and more during development, the contractions are more frequent (approximately two times per minute). (MPG 498 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolff, C. The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219, 545–564 (2009). https://doi.org/10.1007/s00427-010-0316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-010-0316-6

Keywords

Navigation