Skip to main content
Log in

A PCR survey of Hox genes in the myzostomid Myzostoma cirriferum

  • Sequence Corner
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Using degenerate primers, we were able to identify seven Hox genes for the myzostomid Myzostoma cirriferum. The recovered fragments belong to anterior class (Mci_lab, Mci_pb), central class (Mci_Dfd, Mci_Lox5, Mci_Antp, Mci_Lox4), and posterior class (Mci_Post2) paralog groups. Orthology assignment was verified by phylogenetic analyses and presence of diagnostic regions in the homeodomain as well as flanking regions. The presence of Lox5, Lox4, and Post2 supports the inclusion of Myzostomida within Lophotrochozoa. We found signature residues within flanking regions of Lox5, which are also found in annelids, but not in Platyhelminthes. As such the available Hox genes data of myzostomids support an annelid relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Balavoine G, de Rosa R, Adoutte A (2002) Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol 24:366–373

    Article  PubMed  CAS  Google Scholar 

  • Bleidorn C, Eeckhaut I, Podsiadlowski L, Schult N, McHugh D, Halanych KM, Milinkovitch MC, Tiedemann R (2007) Mitochondrial genome and nuclear sequence data support Myzostomida as part of the annelid radiation. Mol Biol Evol 24:1690–1701

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376:479–485

    Article  PubMed  CAS  Google Scholar 

  • de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776

    Article  PubMed  CAS  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sörensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  PubMed  CAS  Google Scholar 

  • Eeckhaut I, McHugh D, Mardulyn P, Tiedemann R, Monteyne D, Jangoux M, Milinkovitch MC (2000) Myzostomida: a link between trochozoans and flatworms? Proc R Soc Lond B 267:1383–1392

    Article  CAS  Google Scholar 

  • Fröbius AC, Matus DQ, Seaver EC (2008) Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I. PLoS ONE 3:e4004

    Article  PubMed  Google Scholar 

  • Jägersten G (1940) Zur Kenntnis der Morphologie, Entwicklung und Taxonomie der Myzostomida. Nova Acta Regiae Soc Sci Ups 11:1–84

    Google Scholar 

  • Kulakova M, Bakalenko N, Novikova E, Cook CE, Eliseeva E, Steinmetz PRH, Kostyuchenko RP, Dondua A, Arendt D, Akam M, Andreeva T (2007) Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217:39–54

    Article  PubMed  CAS  Google Scholar 

  • Lee SE, Gates RD, Jacobs DK (2003) Gene fishing: the use of a simple protocol to isolate multiple homeodomain classes from diverse invertebrate taxa. J Mol Evol 56:509–516

    PubMed  CAS  Google Scholar 

  • Lemons D, McGinnis W (2006) Genomic evolution of Hox gene clusters. Science 313:1918–1922

    Article  PubMed  CAS  Google Scholar 

  • Olson PD (2008) Hox genes and the parasitic flatworms: new opportunities, challenges and lessons from the free-living. Parasitol Int 57:8–17

    Article  PubMed  CAS  Google Scholar 

  • Passamaneck YJ, Halanych KM (2004) Evidence from Hox genes that bryozoans are lophotrochozoans. Evol Dev 6:275–281

    Article  PubMed  CAS  Google Scholar 

  • Pierce RJ, Wu W, Hirai H, Ivens A, Murphy LD, Noel C, Johnston DA, Artiguenave F, Adams M, Cornette J, Viscogliosi E, Capron M, Balavoine G (2005) Evidence for a dispersed Hox gene cluster in the platyhelminth parasite Schistosoma mansoni. Mol Biol Evol 22:2491–2503

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Swofford D (2001) PAUP*: Phylogenetic analysis using Parsimony (*and other methods). Sinauer Associates, Sunderland, MA

  • Telford MJ (2000) Turning Hox “signatures” into synapomorphies. Evol Dev 2:360–364

    Article  PubMed  CAS  Google Scholar 

  • Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129:1389–1400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the DFG in the priority program SPP 1174 “Deep Metazoan Phylogeny” to CB (BL 787/2-1) and RT (TI 349/4-1). DL was supported by a Belgian Postdoctoral Research Associate grant from the “Fonds de la recherche scientifique” (FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bleidorn.

Additional information

Communicated by D.A. Weisblat

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(GIF 333 kb)

High resolution image file (TIFF 1594 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleidorn, C., Lanterbecq, D., Eeckhaut, I. et al. A PCR survey of Hox genes in the myzostomid Myzostoma cirriferum . Dev Genes Evol 219, 211–216 (2009). https://doi.org/10.1007/s00427-009-0282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-009-0282-z

Keywords

Navigation