Skip to main content
Log in

Evolution of DNA-methylation machinery: DNA methyltransferases and methyl-DNA binding proteins in the amphioxus Branchiostoma floridae

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

DNA methylation is an epigenetic mark associated with gene regulation and cell memory, silencing of transposable elements, genomic imprinting, and repression of spurious transcription of duplicated sequences. These roles have varied widely during animal evolution and current functions depend on the specific methylation pattern of the species under consideration. The patterns of methylation are established, maintained, and translated into appropriate functional states by the DNA-methylation machinery, which includes three groups of methyltransferase enzymes, Dnmt1, Dnmt2 and Dnmt3, and five methyl-DNA binding proteins, Mbd1, Mbd2, Mbd3, Mbd4, and MeCP2. In this study, I have identified the members of the Dnmt and the Mbd gene families in the cephalochordate amphioxus (Branchiostoma floridae), the most basal extant chordate and one of the closest sister groups of vertebrates. Database searches, phylogenetic studies and protein domain analyses revealed the presence of the three major groups of Dnmt enzymes in the cephalochordate genome, whereas only two Mbd members, Mbd2/3 and Mbd4, were found. Analysis of the amphioxus methylation machinery suggested that the complexity and the structural organization of cephalochordate methyltransferases do not differ substantially from those of current vertebrate enzymes, while new Mbd proteins arose in vertebrates, which perhaps minimized certain collateral effects associated with the major genomic changes that occurred during the invertebrate–vertebrate transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albalat R, Permanyer J, Cañestro C, Martínez-Mir A, Gonzàlez-Angulo O, Gonzàlez-Duarte R (2003) The first non-LTR retrotransposon characterised in the cephalochordate amphioxus, BfCR1, shows similarities to CR1-like elements. Cell Mol Life Sci 60:803–809

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Ballestar E, Wolffe AP (2001) Methyl-CpG-binding proteins. Targeting specific gene repression. Eur J Biochem 268:1–6

    Article  PubMed  CAS  Google Scholar 

  • Bird A (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–100

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Callebaut I, Courvalin JC, Mornon JP (1999) The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS letters 446:189–193

    Article  PubMed  CAS  Google Scholar 

  • Cañestro C, Albalat R, Hjelmqvist L, Godoy L, Jörnvall H, Gonzàlez-Duarte R (2002a) Ascidian and Amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution. J Mol Evol 54:81–89

    Article  PubMed  Google Scholar 

  • Cañestro C, Gonzàlez-Duarte R, Albalat R (2002b) Minisatellite instability at the Adh locus reveals somatic polymorphism in amphioxus. Nucleic Acids Res 30:2871–2876

    Article  PubMed  Google Scholar 

  • Cañestro C, Albalat R, Gonzàlez-Duarte R (2003) Isolation and characterization of the first non-autonomous transposable element in amphioxus, ATE-1. Gene 318:69–73

    Article  PubMed  Google Scholar 

  • Cañestro C, Yokoi H, Postlethwait JH (2007) Evolutionary developmental biology and genomics. Nat Rev Genet. 8:932–942

    Article  PubMed  Google Scholar 

  • Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA 99:16916–16921

    Article  PubMed  CAS  Google Scholar 

  • Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. Bioessays 21:402–411

    Article  PubMed  CAS  Google Scholar 

  • Fatemi M, Wade PA (2006) MBD family proteins: reading the epigenetic code. J Cell Sci 119:3033–3037

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31:2305–2312

    Article  PubMed  CAS  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  PubMed  CAS  Google Scholar 

  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    Article  PubMed  CAS  Google Scholar 

  • Gonzàlez-Duarte R, Albalat R (2005) Merging protein, gene and genomic data: the evolution of the MDR-ADH family. Heredity 95:184–197

    Article  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Gutierrez A, Sommer RJ (2004) Evolution of dnmt-2 and mbd-2-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic Acids Res 32:6388–96

    Article  PubMed  CAS  Google Scholar 

  • Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322–326

    Article  PubMed  CAS  Google Scholar 

  • Hendrich B, Tweedie S (2003) The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet 19:269–277

    Article  PubMed  CAS  Google Scholar 

  • Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15:710–723

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ (2006) A SINE in the genome of the cephalochordate amphioxus is an Alu element. Int J Biol Sci 2:61–65

    PubMed  CAS  Google Scholar 

  • Holland PW, Garcia-Fernàndez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Dev Suppl 43:125–133

    Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  PubMed  CAS  Google Scholar 

  • Jeltsch A, Nellen W, Lyko F (2006) Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 31:306–308

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. CABIOS 8:275–282

    PubMed  CAS  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, Okano M, Li E, Nozaki M, Sasaki H (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16:2272–2280

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Park J, Choi MC, Kim HP, Park JH, Jung Y, Lee JH, Oh DY, Im SA, Bang YJ, Kim TY (2007) Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression. Biochem Biophys Res Commun 355:318–323

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22:1–10

    Article  PubMed  CAS  Google Scholar 

  • Lauster R, Trautner TA, Noyer-Weidner M (1989) Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J Mol Biol 206:305–312

    Article  PubMed  CAS  Google Scholar 

  • Lees-Murdock DJ, McLoughlin GA, McDaid JR, Quinn LM, O’Doherty A, Hiripi L, Hack CJ, Walsh CP (2004) Identification of 11 pseudogenes in the DNA methyltransferase gene family in rodents and humans and implications for the functional loci. Genomics 84:193–204

    Article  PubMed  CAS  Google Scholar 

  • Lemaire P, Smith WC, Nishida H (2008) Ascidians and the plasticity of the chordate developmental program. Curr Biol 18:R620–R631

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt H, Page AW, Weier HU, Bestor TH (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865–873

    Article  PubMed  CAS  Google Scholar 

  • Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, Keightley PD, Bishop SM, Clarke AR, Bird A (2002) Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297:403–405

    Article  PubMed  CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  • Osborne PW, Luke GN, Holland PW, Ferrier DE (2006) Identification and characterisation of five novel miniature inverted-repeat transposable elements (MITEs) in amphioxus (Branchiostoma floridae). Int J Biol Sci 2:54–60

    PubMed  CAS  Google Scholar 

  • Permanyer J, Gonzàlez-Duarte R, Albalat R (2003) The non-LTR retrotransposons in Ciona intestinalis: new insights into the evolution of chordate genomes. Genome Biol 4:R73

    Article  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez E, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 19:1064–1071

    Article  Google Scholar 

  • Posfai J, Bhagwat AS, Posfai G, Roberts RJ (1989) Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res 17:2421–2435

    Article  PubMed  CAS  Google Scholar 

  • Qiu C, Sawada K, Zhang X, Cheng X (2002) The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol 9:217–224

    PubMed  CAS  Google Scholar 

  • Regev A, Lamb MJ, Jablonka E (1998) The role of DNA methylation in invertebrates: Developmental regulation or genome defense? Mol Biol Evol 15:880–891

    CAS  Google Scholar 

  • Roder K, Hung MS, Lee TL, Lin TY, Xiao H, Isobe KI, Juang JL, Shen CJ (2000) Transcriptional repression by Drosophila methyl-CpG-binding proteins. Mol Cell Biol 20:7401–7409

    Article  PubMed  CAS  Google Scholar 

  • Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, Bestor TH (2006) Large-scale structure of genomic methylation patterns. Genome Res 16:157–163

    Article  PubMed  CAS  Google Scholar 

  • Roloff TC, Ropers HH, Nuber UA (2003) Comparative study of methyl-CpG-binding domain proteins. BMC genomics 4:1

    Article  PubMed  Google Scholar 

  • Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  PubMed  CAS  Google Scholar 

  • Screaton RA, Kiessling S, Sansom OJ, Millar CB, Maddison K, Bird A, Clarke AR, Frisch SM (2003) Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis. Proc Natl Acad Sci USA 100:5211–5216

    Article  PubMed  CAS  Google Scholar 

  • Simmen MW, Leitgeb S, Charlton J, Jones SJ, Harris BR, Clark VH, Bird A (1999) Nonmethylated transposable elements and methylated genes in a chordate genome. Science 283:1164–1167

    Article  PubMed  CAS  Google Scholar 

  • Simpson VJ, Johnson TE, Hammen RF (1986) Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucleic Acids Res 14:6711–6719

    Article  PubMed  CAS  Google Scholar 

  • Smallwood A, Esteve PO, Pradhan S, Carey M (2007) Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 21:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32:W309–W312

    Article  PubMed  CAS  Google Scholar 

  • Suzuki MM, Kerr AR, De Sousa D, Bird A (2007) CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res 17:625–631

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tweedie S, Charlton J, Clark V, Bird A (1997) Methylation of genomes and genes at the invertebrate–vertebrate boundary. Mol Cell Biol 17:1469–1475

    PubMed  CAS  Google Scholar 

  • Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, Mizzen CA, Peinado MA, Robinson GE (2006) Functional CpG methylation system in a social insect. Science 314:645–647

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, Lein ES, Eadie BD, Willhoite AR, Muotri AR, Summers RG, Chun J, Lee KF, Gage FH (2003) Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA 100:6777–6782

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Cristian Cañestro and Salvatore D’Aniello for helpful discussions, Jon Permanyer for technical advice, and the Serveis Lingüístics (Universitat de Barcelona) for revising the English version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard Albalat.

Additional information

Communicated by J. Gibson-Brown

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

B. floridae EST sequences (DOC 27.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albalat, R. Evolution of DNA-methylation machinery: DNA methyltransferases and methyl-DNA binding proteins in the amphioxus Branchiostoma floridae . Dev Genes Evol 218, 691–701 (2008). https://doi.org/10.1007/s00427-008-0247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-008-0247-7

Keywords

Navigation