Skip to main content

Advertisement

Log in

Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Follistatin (Fst) inhibits transforming growth factor-β (TGF-B) proteins and is a known regulator of amniote myogenesis. Here, we used phylogenetic, genomic and experimental approaches to study its evolution in teleosts. Phylogenetic analyses suggested that one fst gene (fst1) is common to euteleosts, but a second gene (fst2) is conserved specifically within the Ostariophysi. Zebrafish fst1/2 respectively appear on chromosomes 5 and 10 in two genomic regions, each with conserved synteny to a single region in tetrapods. Interestingly, other teleosts have two corresponding chromosomal regions with a similar repertoire of paralogues. Phylogenetic reconstruction clustered these gene duplicates into two sister clades branching from tetrapod sequences. We suggest that an ancestral fst-containing chromosome was duplicated during the teleost whole genome duplication, but that fst2 was lost in lineages external to the Ostariophysi. We show that Fst1 of teleosts/mammals has evolved under strong purifying selection, but the N-terminal of Fst2 may have evolved under positive selection. Furthermore, the tissue-specific expression of zebrafish fst2 was restricted to fewer tissues compared to its paralogue and the single fst1 orthologue of Atlantic salmon (Salmo salar). Zebrafish fst1/2 may have subfunctionalized relative to non-duplicated vertebrate lineages, as several regions in the fst promoter of tetrapods were conserved with one paralogue, but not both. Finally, we examined the embryonic expression of fst1 in a teleost outside the Ostariophysi (Atlantic salmon). During segmentation, fst1 was expressed in the anterior somite compartment but was excluded from muscle progenitors that strongly expressed myogenic regulatory factors (MRFs). Later, fst1 was expressed in myogenic progenitors of the pectoral fin buds and also within the pax7 + cell layer external to the myotome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and evolution of salmonid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. New York, Pelnum, pp 1–53

    Google Scholar 

  • Amthor H, Connolly D, Patel K, Brand-Saberi B, Wilkinson DG, Cooke J, Christ B (1996) The expression and regulation of follistatin and a follistatin-like gene during avian somite compartmentalization and myogenesis. Dev Biol 178:343–362

    Article  CAS  PubMed  Google Scholar 

  • Amthor H, Nicholas G, McKinnell I, Kemp F, Sharma M, Kambadur R, Patel K (2004) Follistatin complexes myostatin and antagonises myostatin-mediated inhibition of myogenesis. Dev Biol 270:19–30

    Article  CAS  PubMed  Google Scholar 

  • Bauer H, Meier A, Hild M, Stachel S, Economides A, Hazelett D, Harland RM, Hammerschmidt M (1998) Follistatin and noggin are excluded from the zebrafish organizer. Dev Biol 204:488–507

    Article  CAS  PubMed  Google Scholar 

  • Baxendale S, Davison C, Muxworthy C, Wolff C, Ingham PW, Roy S (2004) The B-cell maturation factor specifies slow-twitch muscle fiber identity in response to hedgehog signaling. Nat Genet 36:88–93

    Article  CAS  PubMed  Google Scholar 

  • Benton MJ, Donoghue PC (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53

    Article  CAS  PubMed  Google Scholar 

  • Brunet FG, Roest Crollius H, Paris M, Aury J, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M (2006) Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol 23:1008–1016

    Article  Google Scholar 

  • Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218–235

    Article  CAS  PubMed  Google Scholar 

  • Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942

    Article  CAS  PubMed  Google Scholar 

  • Dal-Pra S, Fürthauer M, Van-Celst J, Thisse B, Thisse C (2006) Noggin1 and follistatin-like2 function redundantly to chordin to antagonize BMP activity. Dev Biol 298:514–526

    Article  CAS  PubMed  Google Scholar 

  • Devoto SH, Melancon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vitro, prior to somite formation. Development 122:3371–3380

    CAS  PubMed  Google Scholar 

  • Esch FS, Shimasaki S, Mercado M, Cooksey K, Ling N, Ying S, Ueno N, Guillemin R (1987) Structural characterization of follistatin: a novel follicle-stimulating hormone release-inhibiting polypeptide from the gonad. Mol Endocrinol 1:849–855

    Article  CAS  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yam YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 252:1531–1545

    Google Scholar 

  • Gregory DJ, Waldbieser GC, Bosworth BG (2004) Cloning and characterization of myogenic regulatory genes in three ictalurid species. Anim Genet 53:425–430

    Article  Google Scholar 

  • Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hammond CL, Hinitis Y, Osborn DPS, Minchin JEN, Tettamanti G, Hughes SM (2007) Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Dev Biol 302:504–521

    Article  CAS  PubMed  Google Scholar 

  • Hollway GE, Bryson-Richardson RJ, Berger S, Cole NJ, Hall TE, Currie PD (2007) Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo. Dev Cell 12:207–219

    Article  CAS  PubMed  Google Scholar 

  • Iezzi S, Di Padova M, Serra C, Caretti G, Simone C, Maklan E, Minetti G, Zhao P, Hoffman EP, Puri PL, Sartorelli V (2004) Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin. Dev Cell 6:673–684

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Jowett T (2001) Double in Situ hybridization techniques in zebrafish. Methods 23:345–358

    Article  CAS  PubMed  Google Scholar 

  • Korber B (2000) HIV Signature and Sequence Variation Analysis. In: Rodrigo AG, Learn GH (eds) Computational analysis of HIV molecular sequences. Kluwer, Dordrecht, pp 55–72

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetic analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ (2007) Quadrupling muscle mass in mice by targeting TGF-β signaling pathways. PLoS ONE 8:e789

    Article  Google Scholar 

  • Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98:9306–9311

    Article  CAS  PubMed  Google Scholar 

  • Macqueen DJ, Johnston IA (2006) A novel salmonid myod gene is distinctly regulated during development and probably arose by duplication after the genome tetraploidization. FEBS Lett 580:4996–5002

    Article  CAS  PubMed  Google Scholar 

  • Macqueen DJ, Robb D, Johnston IA (2007) Temperature influences the coordinated expression of myogenic regulatory factors during embryonic myogenesis in Atlantic salmon (Salmo salar L.). J Exp Biol 210:2781–2794

    Article  CAS  PubMed  Google Scholar 

  • Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A (1995) Multiple defects and perinatal death in mice deficient in follistatin. Nature 374:360–363

    Article  CAS  PubMed  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-B superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  • Minetti GC, Colussi C, Adami R, Serra C, Mozzetta C, Parente V, Fortuni S, Straino S, Sampaolesi M, Di Padova M, Illi B, Gallinari P, Steinkühler C, Capogrossi MC, Sartorelli V, Bottinelli R, Gaetano C, Puri PL (2006) Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med 12:1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H (1990) Activin-binding protein from rat ovary is follistatin. Science 247:836–838

    Article  CAS  PubMed  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828

    Article  CAS  PubMed  Google Scholar 

  • Neyt C, Jagla K, Thisse C, Thisse B, Haines L, Currie PD (2000) Evolutionary origins of vertebrate appendicular muscle. Nature 408:82–86

    Article  CAS  PubMed  Google Scholar 

  • Phillips DJ, de Krestor DM (1998) Follistatin: a multifunctional regulatory protein. Front Neuroendocrinol 19:287–322

    Article  CAS  PubMed  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A pax3/pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    Article  CAS  PubMed  Google Scholar 

  • Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–345

    Article  CAS  PubMed  Google Scholar 

  • Semon M, Wolfe KH (2007) Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. Trends Genet 23:108–112

    Article  CAS  PubMed  Google Scholar 

  • Sidis Y, Schneyer AL, Sluss PM, Johnson LN, Keutmann HT (2001) Follistatin: essential role for the N-terminal domain in activin binding and neutralization. J Biol Chem 276:17718–17726

    Article  CAS  PubMed  Google Scholar 

  • Shanmugalingam S, Wilson SW (1998) Isolation, expression and regulation of a zebrafish paraxis homologue. Mech Dev 78:85–89

    Article  CAS  PubMed  Google Scholar 

  • Stellabotte F, Dobbs-McAuliffe B, Fernandez DA, Feng X, Devoto SH (2007) Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development 134:1253–1257

    Article  CAS  PubMed  Google Scholar 

  • Suyama M, Torrents T, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–W612

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13:382–390

    Article  CAS  PubMed  Google Scholar 

  • Thisse B, Thisse C (2004) Fast release clones: a high throughput expression analysis, gene expression section (2004) (http://zfin.org)

  • Thisse B, Pflumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis, gene expression section (2001) (http://zfin.org)

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Thompson TB, Lerch TF, Cook RW, Woodruff TK, Jardetzky TS (2005) The structure of the follistatin: activin complex reveals antagonism of both type I and type II receptor binding. Dev Cell 9:535–543

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y (2004) Tetraodon genome confirms Takifugu findings: most fish are ancient polyploids. Genome Biol 5:250

    Article  PubMed  Google Scholar 

  • Van de Peer Y, Frickey T, Taylor J, Meyer A (2002) Dealing with saturation at the amino acid level: a case study based on anciently duplicated zebrafish genes. Gene 295:205–211

    Article  PubMed  Google Scholar 

  • Weinberg ES, Allende ML, Kelly CS, Abdelhami DA, Murakami T, Anderman P, Doerre OG, Gunwald DJ, Riggleman B (1996) Developmental regulation of zebrafish MyoD in normal sex ratio, no tail and spadetail embryos. Development 122:271–280

    CAS  PubMed  Google Scholar 

  • Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307–1314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All S. salar tissues were provided by EWOS Innovation. We thank Professor Vves Van de Peer for his helpful correspondence regarding the ASATURA program. DJM was supported by a Natural Environment Research Council studentship (NERC/S/A/2004/12435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Johnston.

Additional information

Communicated by T. Hollemann

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Amino acid alignment of Fst sequences used for phylogenetic reconstruction (see Fig. 1) (DOC 51 kb).

Fig. S2

The 2-kb regions upstream of the first exon of zebrafish fst1/fst2, and fst1 of frog (X. tropicalis) and mouse (M. musculus) were aligned using DiAlignTF (see Materials and methods section). ad are example extracts from the alignment showing conserved regions that existed between all species (a), between the promoter of zebrafish fst1 and tetrapod fst1, but not zebrafish fst2 (b), between the promoter of zebrafish fst2 and tetrapods, but not zebrafish fst1 (c) and between the promoter of zebrafish fst1/2 and either the frog or mouse promoter (d). The bold and italic font in (a) show two conserved TFBSs. The numbers to the left of the alignment show the position of the first nucleotide on that alignment relative to the 2,000 bp of promoter sequence (5′–3′). Stars and dashes, respectively, highlight conserved nucleotides and gaps in the alignment (GIF 51 kb).

High resolution image file (TIF 6.7 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macqueen, D.J., Johnston, I.A. Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses. Dev Genes Evol 218, 1–14 (2008). https://doi.org/10.1007/s00427-007-0194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0194-8

Keywords

Navigation