Skip to main content

Advertisement

Log in

Regenerating the central nervous system: how easy for planarians!

  • Review
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The regenerative capabilities of freshwater planarians (Platyhelminthes) are very difficult to match. A fragment as tiny as 1/279th of the planarian body is able to regenerate a whole animal within very few days [Morgan. Arch Entwm 7:364–397 (1898)]. Although the planarian central nervous system (CNS) may appear quite morphologically simple, recent studies have shown it to be more complex at the molecular level, revealing a high degree of molecular compartmentalization in planarian cephalic ganglia. Planarian neural genes include homologues of well-known transcription factors and genes involved in human diseases, neurotransmission, axon guidance, signaling pathways, and RNA metabolism. The availability of hundreds of genes expressed in planarian neurons coupled with the ability to silence them through the use of RNA interference makes it possible to start unraveling the molecular mechanisms underlying CNS regeneration. In this review, I discuss current knowledge on the planarian nervous system and the genes involved in its regeneration, and I discuss some of the important questions that remain to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agata K, Watanabe K (1999) Molecular and cellular aspects of planarian regeneration. Semin Cell Dev Biol 10:77–33

    Google Scholar 

  • Agata K, Soejima Y, Kato K, Kobayashi C, Umesono Y, Watanabe K (1998) Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zoolog Sci 15:433–440

    PubMed  CAS  Google Scholar 

  • Agata K, Tanaka T, Kobayashi C, Kato K, Saitoh Y (2003) Intercalary regeneration in planarians. Dev Dyn 226:308–316

    PubMed  CAS  Google Scholar 

  • Araújo SJ, Tear G (2003) Axon guidance mechanisms and molecules: lessons from invertebrates. Nat Rev Neurosci 4:10–92

    Google Scholar 

  • Asada A, Orii H, Watanabe K, Tsubaki M (2005) Planarian peptidylglycine-hydroxylating monooxygenase, a neuropeptide processing enzyme, colocalizes with cytochrome b561 along the central nervous system. FEBS J 272:942–955

    CAS  Google Scholar 

  • Asami M, Nakatsuka T, Hayashi T, Kou K, Kagawa H, Agata K (2002) Cultivation and characterization of planarian neuronal cells isolated by fluorescence activated cell sorting (FACS). Zoolog Sci 19:1257–1265

    PubMed  CAS  Google Scholar 

  • Baguñà J (1998) Planarians. In: Geraudie J, Ferretti J (eds) Cellular and molecular basis of regeneration: from invertebrates to humans. Wiley, Chichester, pp 135–165

    Google Scholar 

  • Baguñà J, Ballester R (1978) The nervous system in planarians: peripheral and gastrodermal plexuses, pharynx innervation, and the relationship between central nervous system structure and the acoelomate organization. J Morph 155:237–252

    Google Scholar 

  • Baguñà J, Riutort M (2004) The dawn of bilaterian animals: the case of acoelomorph flatworms. Bioessays 26:1046–1057

    PubMed  Google Scholar 

  • Baguñà J, Salo E, Romero R (1989) Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. Int J Dev Biol 33:261–266

    PubMed  Google Scholar 

  • Bautz A, Schilt J (1986) Somatostatin-like peptide and regeneration capacities in planarians. Gen Comp Endocrinol 64:267–272

    PubMed  CAS  Google Scholar 

  • Bondi C (1959) Osservazioni sui rapporti tra rigenerazione degli occhi e sistema nervoso in Dugesia lugubris. Arch Zool Ital 44:141–150

    Google Scholar 

  • Brondsted HV (1969) Planarian regeneration. Pergamon, New York

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Platyhelminthes. Structure and function in the nervous systems of invertebrates. Freeman, San Francisco, CA

    Google Scholar 

  • Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127

    PubMed  CAS  Google Scholar 

  • Cebrià F, Newmark PA (2005) Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development 132:3691–3703

    PubMed  Google Scholar 

  • Cebrià F, Newmark PA (2007) Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians. Development 134:833–837

    PubMed  Google Scholar 

  • Cebrià F, Vispo M, Newmark PA, Bueno D, Romero R (1997) Myocyte differentiation and body wall muscle regeneration in the planarian Girardia tigrina. Dev Genes Evol 207:306–316

    Google Scholar 

  • Cebrià F, Kobayashi C, Umesono Y, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Itoh M, Taira M, Sanchez Alvarado A, Agata K (2002a) FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419:620–624

    PubMed  Google Scholar 

  • Cebrià F, Kudome T, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Agata K (2002b) The expression of neural-specific genes reveals the structural and molecular complexity of the planarian central nervous system. Mech Dev 116:199–204

    PubMed  Google Scholar 

  • Cebrià F, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Agata K (2002c) Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. Dev Growth Differ 44:135–146

    PubMed  Google Scholar 

  • Cebrià F, Guo T, Jopek J, Newmark PA (2007) Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev Biol 307:394–406

    PubMed  Google Scholar 

  • Child CM (1904a) Studies on regulation. V. The relation between the central nervous system and regeneration in Leptoplana: posterior regeneration. J Exp Zool 1:463–512

    Google Scholar 

  • Child CM (1904b) Studies on regulation. VI. The relation between the central nervous system and regulation in Leptoplana: anterior and lateral regeneration. J Exp Zool 1:513–558

    Google Scholar 

  • Chilton JK (2006) Molecular mechanisms of axon guidance. Dev Biol 292:13–24

    PubMed  CAS  Google Scholar 

  • Dalyell JG (1814) Observations on some interesting phenomena in animal physiology, exhibited by several species of planariae. Edinburgh House, London, UK

    Google Scholar 

  • Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675

    PubMed  CAS  Google Scholar 

  • Dinsmore CE, Mescher AL (1998) The role of the nervous system in regeneration. In: Ferretti P, Géraudie J (eds) Cellular and molecular basis of regeneration: from invertebrates to humans. Wiley, Chichester, pp 79–108

    Google Scholar 

  • Eriksson KS, Panula P (1994) Gamma-aminobutyric acid in the nervous system of a planarian. J Comp Neurol 345:528–536

    PubMed  CAS  Google Scholar 

  • Fernandes MC, Alvares EP, Gama P, Silveira M (2003) Serotonin in the nervous system of the head region of the land planarian Bipalium kewense. Tissue Cell 35:479–486

    PubMed  CAS  Google Scholar 

  • Franquinet R (1979) The role of serotonin and catecholamines in the regeneration of the Planaria Polycelis tenvis. J Embryol Exp Morphol 51:85–95

    PubMed  CAS  Google Scholar 

  • Franquinet R, Le Moigne A (1979) Relation entre les variations des taux de sérotonine et d’ AMP cyclique au cors de la régénération d’ une planaire. Biol Cell 34:71–76

    CAS  Google Scholar 

  • Fusaoka E, Inoue T, Mineta K, Agata K, Takeuchi K (2006) Structure and function of primitive immunoglobulin superfamily neural cell adhesion molecules: a lesson from studies on planarian. Genes Cells 11:541–555

    PubMed  CAS  Google Scholar 

  • Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54:1–18

    PubMed  CAS  Google Scholar 

  • Goldberg JL (2003) How does an axon grow? Genes Dev 17:941–958

    PubMed  CAS  Google Scholar 

  • Golubev AI (1988) Glia and neuroglia relationships in the central nervous system of the Turbellaria (Electron microscopic data). Fortschr Zool 36:31–37

    Google Scholar 

  • Guan KL, Rao Y (2003) Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 4:941–956

    PubMed  CAS  Google Scholar 

  • Hutson LD, Chien CB (2002) Pathfinding and error correction by retinal axons: the role of astray/robo2. Neuron 33:205–217

    PubMed  CAS  Google Scholar 

  • Hyman LH (1951) The invertebrates: Platyhelminthes and Rhynchocoela. McGraw-Hill, New York

    Google Scholar 

  • Inatani M (2005) Molecular mechanisms of optic axon guidance. Naturwissenschaften 92:549–561

    PubMed  CAS  Google Scholar 

  • Inoue T, Kumamoto H, Okamoto K, Umesono Y, Sakai M, Sanchez Alvarado A, Agata K (2004) Morphological and functional recovery of the planarian photosensing system during head regeneration. Zoolog Sci 21:275–283

    PubMed  CAS  Google Scholar 

  • Inoue T, Hayashi T, Takechi K, Agata K (2007) Clathrin-mediated endocytic signals are required for the regeneration of, as well as homeostasis in, the planarian CNS. Development 134:1679–1689

    PubMed  CAS  Google Scholar 

  • Ishizuka H, Maezawa T, Kawauchi J, Nodono H, Hirao Y, Nishimura O, Nakagawa H, Sekii K, Tasaka K, Tarui H, Agata K, Hoshi M, Kobayashi K, Sakakibara Y, Matsumoto M (2007) The Dugesia ryukyuensis database as a molecular resource for studying switching of the reproductive system. Zoolog Sci 24:31–37

    PubMed  CAS  Google Scholar 

  • Johnston RN, Shaw C, Halton DW, Verhaert P, Baguñà J (1995) GYIRFamide: a novel FMRFamide-related peptide (FaRP) from the triclad turbellarian, Dugesia tigrina. Biochem Biophys Res Commun 209:689–697

    PubMed  CAS  Google Scholar 

  • Kishida Y, Kurabuchi S (1978) The role of the nervous system in the planarian regeneration. I. Regeneration of body fragments deprived of ventral nerve cords. Annot Zool Jpn 51:90–99

    Google Scholar 

  • Kobayashi C, Saito Y, Ogawa K, Agata K (2007) Wnt signaling is required for antero-posterior patterning of the planarian brain. Dev Biol 306:714–724

    PubMed  CAS  Google Scholar 

  • Koinuma S, Umesono Y, Watanabe K, Agata K (2003) The expression of planarian brain factor homologs, DjFoxG and DjFoxD. Gene Expr Patterns 3:21–27

    PubMed  CAS  Google Scholar 

  • Koopowitz H, Chien P (1974) Ultrastructure of the nerve plexus in flatworms. I. Peripheral organization. Cell Tissue Res 155:337–351

    PubMed  CAS  Google Scholar 

  • Koopowitz H, Chien P (1975) Ultrastructure of nerve plexus in flatworms. II. Sites of synaptic interactions. Cell Tissue Res 157:207–216

    PubMed  CAS  Google Scholar 

  • Lender T (1955) Some properties of the organisine of eye regeneration in the planaria Polycelis nigra. C R Hebd Seances Acad Sci 240:1726–1728

    PubMed  CAS  Google Scholar 

  • Lender T (1964) Mise en évidence et role de la neurosécrétion chez les planaires d’eau douce (Turbellariés, Triclades). Ann d’Endocrin 25:61–65

    Google Scholar 

  • Lender T, Gripon P (1962) La régénération des yeux et du cerveaux de Dugesia lugubris en présence de deux troncs nerveaux inégaux. Bull Soc Zool Fr 87:387–395

    Google Scholar 

  • Lender T, Klein N (1961) Mise en évidence de cellules sécrétices dans le cerveau de la Planaire POlycelis nigra. Variation de leur nombre au cours de la régénération postérieure. CR Acad Sci 253:331–333

    CAS  Google Scholar 

  • Lentz TL (1968) Primitive nervous systems. Yale University Press, New Haven, CT

    Google Scholar 

  • MacRae EK (1967) The fine structure of sensory receptor processes in the auricular epithelium of the planarian Dugesia tigrina. Z Zellforsch 82:479–494

    PubMed  CAS  Google Scholar 

  • Mannini L, Rossi L, Deri P, Gremigni V, Salvetti A, Saló E, Batistoni R (2004) Djeyes absent (Djeya) controls prototypic planarian eye regeneration by cooperating with the transcription factor Djsix-1. Dev Biol 269:346–359

    PubMed  CAS  Google Scholar 

  • Marsal M, Pineda D, Salo E (2003) Gtwnt-5 a member of the wnt family expressed in a subpopulation of the nervous system of the planarian Girardia tigrina. Gene Expr Patterns 3:489–495

    PubMed  CAS  Google Scholar 

  • Maule AG, Halton DW, Johnston CF, Shaw C, Fairweather I (1990) The serotoninergic, cholinergic and peptidergic components of the nervous system in the monogenean parasite, Diclidophora merlangi: a cytochemical study. Parasitology 100:255–273

    PubMed  CAS  Google Scholar 

  • Maule AG, Shaw C, Halton DW, Brennan GP, Johnston CF, Moore S (1992) Neuropeptide F (Moniezia expansa): localization and characterization using specific antisera. Parasitology 105:505–512

    PubMed  CAS  Google Scholar 

  • McVeigh P, Kimber MJ, Novozhilova E, Day TA (2005) Neuropeptide signalling systems in flatworms. Parasitology 131:S41–S55

    PubMed  CAS  Google Scholar 

  • Mineta K, Nakazawa M, Cebrià F, Ikeo K, Agata K, Gojobori T (2003) Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Proc Natl Acad Sci U S A 100:7666–7671

    PubMed  Google Scholar 

  • Morgan TH (1898) Experimental studies of the regeneration of Planaria maculata. Arch Entwicklungsmech Org 7:364–397

    Google Scholar 

  • Morgan TH (1900) Regeneration in planarians. Arch Entwicklungsmech Org 10:58–119

    Google Scholar 

  • Morgan TH (1905) “Polarity” considered as a phenomenon of gradation of materials. J Exp Zool 2:495–506

    Google Scholar 

  • Morita M, Best JB (1965) Electron microscopic studies on Planaria. II. Fine structure of the neurosecretory system in the planarian Dugesia dorotocephala. J Ultrastruct Res 13:396–408

    PubMed  CAS  Google Scholar 

  • Morita M, Best JB (1966) Electron microscopic studies of Planaria. 3. Some observations on the fine structure of planarian nervous tissue. J Exp Zool 161:391–411

    PubMed  CAS  Google Scholar 

  • Morita M, Hall F, Best JB, Gern W (1987) Photoperiodic modulation of cephalic melatonin in planarians. J Exp Zool 241:383–388

    PubMed  CAS  Google Scholar 

  • Morita M, Hall FL, Best JB (1988) An optic neurosecretory cell in the planarian. Fortschr Zool 36:207–210

    Google Scholar 

  • Nakazawa M, Cebrià F, Mineta K, Ikeo K, Agata K, Gojobori T (2003) Search for the evolutionary origin of a brain: planarian brain characterized by microarray. Mol Biol Evol 20:784–791

    PubMed  CAS  Google Scholar 

  • Newmark PA, Sánchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    PubMed  CAS  Google Scholar 

  • Newmark PA, Sánchez Alvarado A (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219

    PubMed  CAS  Google Scholar 

  • Newmark PA, Reddien PW, Cebrià F, Sánchez Alvarado A (2003) Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Natl Acad Sci U S A 100(Suppl 1):11861–11865

    PubMed  CAS  Google Scholar 

  • Niclou SP, Ehlert EM, Verhaagen J (2006) Chemorepellent axon guidance molecules in spinal cord injury. J Neurotrauma 23:409–421

    PubMed  Google Scholar 

  • Nishimura K, Kitamura Y, Inoue T, Umesono Y, Sano S, Yoshimoto K, Inden M, Takata K, Taniguchi T, Shimohama S, Agata K (2007a) Reconstruction of dopaminergic neural network and locomotion function in planarian regenerates. Dev Neurobiol 67:1059–1078

    PubMed  CAS  Google Scholar 

  • Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Takeuchi K, Taniguchi T, Agata K (2007b) Identification and distribution of tryptophan hydroxylase (TPH)-positive neurons in the planarian Dugesia japonica. Neurosci Res 59:101–106

    PubMed  CAS  Google Scholar 

  • Nogi T, Levin M (2005) Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev Biol 287:314–335

    PubMed  CAS  Google Scholar 

  • Ogawa K, Ishihara S, Saito Y, Mineta K, Nakazawa M, Ikeo K, Gojobori T, Watanabe K, Agata K (2002a) Induction of a noggin-like gene by ectopic DV interaction during planarian regeneration. Dev Biol 250:59–70

    PubMed  CAS  Google Scholar 

  • Ogawa K, Kobayashi C, Hayashi T, Orii H, Watanabe K, Agata K (2002b) Planarian fibroblast growth factor receptor homologs expressed in stem cells and cephalic ganglions. Develop Growth Differ 44:191–204

    CAS  Google Scholar 

  • Okamoto K, Takeuchi K, Agata K (2005) Neural projections in planarian brain revealed by fluorescent dye tracing. Zoolog Sci 22:535–546

    PubMed  Google Scholar 

  • Omar HH, Humphries JE, Larsen MJ, Kubiak TM, Geary TG, Maule AG, Kimber MJ, Day TA (2007) Identification of a platyhelminth neuropeptide receptor. Int J Parasitol 37:725–733

    PubMed  CAS  Google Scholar 

  • Oosaki T, Ishii S (1965) Observations on the ultrastructure of nerve cells in the brain of the planarian, Dugesia gonocephala. Z Zellforsch 66:782–793

    PubMed  CAS  Google Scholar 

  • Pallas PS (1766) Miscellanea zoologica, quibus novae imprimis atque obscurae animalium species Hagae Comitum, apud Pterum van Cleef, Holland

  • Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    PubMed  CAS  Google Scholar 

  • Pineda D, Salo E (2002) Planarian Gtsix3, a member of the Six/so gene family, is expressed in brain branches but not in eye cells. Gene Expr Patterns 2:169–173

    PubMed  CAS  Google Scholar 

  • Pineda D, Rossi L, Batistoni R, Salvetti A, Marsal M, Gremigni V, Falleni A, Gonzalez-Linares J, Deri P, Saló E (2002) The genetic network of prototypic planarian eye regeneration is Pax6 independent. Development 129:1423–1434

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London

    Google Scholar 

  • Randolph H (1897) Observations and experiments on regeneration in planarians. Arch Entwicklungsmech Org 5:352–372

    Google Scholar 

  • Reddien PW, Sanchez Alvarado A (2004) Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20:725–757

    PubMed  CAS  Google Scholar 

  • Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sanchez Alvarado A (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8:635–649

    PubMed  CAS  Google Scholar 

  • Reisinger E (1972) Die Evolution des Orthogons der Spiralier und daB Archicoelomatenproblem. Z Zool Syst Evolutionforsch 10:1–43

    Article  Google Scholar 

  • Reuter M, Gustafsson M (1989) “Neuroendocrine cells” in flatworms—progenitors to metazoan neurons? Arch Histol Cytol 52(Suppl):253–263

    PubMed  Google Scholar 

  • Reuter M, Gustafsson MK (1995) The flatworm nervous system: pattern and phylogeny. Exs 72:25–59

    PubMed  CAS  Google Scholar 

  • Reuter M, Gustafsson M (1996) Neuronal signal substances in asexual multiplication and development in flatworms. Cell Mol Neurobiol 16:591–616

    PubMed  CAS  Google Scholar 

  • Reuter M, Palmberg I (1989) Development and differentiation of neuronal subsets in asexually reproducing Microstomum lineare. Immunocytochemistry of 5-HT, RF-amide and SCPB. Histochemistry 91:123–131

    PubMed  CAS  Google Scholar 

  • Reuter M, Gustafsson MK, Sahlgren C, Halton DW, Maule AG, Shaw C (1995a) The nervous system of Tricladida. I. Neuroanatomy of Procerodes littoralis (Maricola, Procerodidae): an immunocytochemical study. Invert Neurosci 1:113–122

    PubMed  CAS  Google Scholar 

  • Reuter M, Gustafsson MK, Sheiman IM, Terenina N, Halton DW, Maule AG, Shaw C (1995b) The nervous system of Tricladida. II. Neuroanatomy of Dugesia tigrina (Paludicola, Dugesiidae): an immunocytochemical study. Invert Neurosci 1:133–143

    PubMed  CAS  Google Scholar 

  • Reuter M, Gustafsson MKS, Mäntylä K, Grimmelikhuijzen CJP (1996a) The nervous system of Tricladida. III. Neuroanatomy of Dendrocoelum lacteum and Polycelis tenuis (Plathelminthes, Paludicola): an immunocytochemical study. Zoomorphology 116:111–122

    Google Scholar 

  • Reuter M, Sheiman IM, Gustafsson MKS, Halton DW, Maule AG, Shaw C (1996b) Development of the nervous system in Dugesia tigrina during regeneration after fission and decapitation. Invertebr Reprod Dev 29:199–211

    Google Scholar 

  • Ribeiro P, El-Shehabi F, Patocka N (2005) Classical transmitters and their receptors in flatworms. Parasitology 131:S19–S40

    PubMed  CAS  Google Scholar 

  • Rieger RM, Tyler S, Smith JPS III, Rieger GE (1991) Platyhelminthes: turbellaria. In: Harrison FW, Bogitsh BJ (eds) Microscopic anatomy of invertebrates, vol. 3. Wiley–Liss, New York, pp 7–140

    Google Scholar 

  • Rossi L, Deri P, Andreoli I, Gremigni V, Salvetti A, Batistoni R (2003) Expression of DjXnp, a novel member of the SNF2-like ATP-dependent chromatin remodelling genes, in intact and regenerating planarians. Int J Dev Biol 47:293–298

    PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguna J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci U S A 99:11246–11251

    PubMed  CAS  Google Scholar 

  • Sakai F, Agata K, Orii H, Watanabe K (2000) Organization and regeneration ability of spontaneous supernumerary eyes in planarians—eye regeneration field and pathway selection by optic nerves. Zoolog Sci 17:375–381

    PubMed  CAS  Google Scholar 

  • Saló E (2006) The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). Bioessays 28:546–559

    PubMed  Google Scholar 

  • Sánchez Alvarado A (2000) Regeneration in the metazoans: why does it happen? BioEssays 22:578–590

    PubMed  Google Scholar 

  • Sánchez Alvarado A, Kang H (2005) Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea. Exp Cell Res 306:299–308

    PubMed  Google Scholar 

  • Sánchez Alvarado A, Newmark PA (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci U S A 96:5049–5054

    PubMed  Google Scholar 

  • Sánchez Alvarado A, Newmark PA, Robb SM, Juste R (2002) The Schmidtea mediterranea database as a molecular resource for studying Platyhelminthes, stem cells and regeneration. Development 129:5659–5665

    PubMed  Google Scholar 

  • Sauzin-Monnot MJ (1972) Étude ultrastructurale du tissue nerveux et des produits de secretion nerveuse, au cours des premières heures de regeneration de la planaire Polycelis nigra (Turbellarié-Triclade) au niveau de la blessure. Ann Embryol Morphogen 5:257–265

    Google Scholar 

  • Selzer ME (2003) Promotion of axonal regeneration in the injured CNS. Lancet Neurol 2:157–166

    PubMed  CAS  Google Scholar 

  • Sheiman IM, Kreshchenko ND, Sedel, nikov ZV, Groznyi AV (2004) Morphogenesis in planarians Dugesia tigrina. Ontogenez 35:285–290

    PubMed  CAS  Google Scholar 

  • Singer M (1952) The influence of the nerve in regeneration of the amphibian extremity. Q Rev Biol 27:169–200

    PubMed  CAS  Google Scholar 

  • Sperry PJ, Ansevin KD, Tittel FK (1973) The inductive role of the nerve cord in regeneration of isolated postpharyngeal body sections of Dugesia dorotocephala. J Exp Zool 186:159–174

    PubMed  CAS  Google Scholar 

  • Stéphan-Dubois F, Lender Th (1956) Corrélation humorales dans le régénération des planaires paludicoles. Ann Sci Nat Zool 11. ser

  • Trawicki W, Czubaj A, Moraczewski J (1988) The brain ultrastructure of Dendrocoelum lacteum (O.F. Muller). Fortschr Zool 36:195–200

    Google Scholar 

  • Umesono Y, Watanabe K, Agata K (1997) A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain. Dev Growth Differ 39:723–727

    PubMed  CAS  Google Scholar 

  • Umesono Y, Watanabe K, Agata K (1999) Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. Dev Genes Evol 209:31–39

    PubMed  CAS  Google Scholar 

  • Venturini G, Carolei A, Palladini G, Margotta V, Lauro MG (1983) Radioimmunological and immunocytochemical demonstration of Met-enkephalin in planaria. Comp Biochem Physiol C 74:23–25

    PubMed  CAS  Google Scholar 

  • Wikgren MC, Reuter M (1985) Neuropeptides in a microturbellarian whole-mount immunocytochemistry. Peptides 6(Suppl 3):471–475

    PubMed  CAS  Google Scholar 

  • Wolff E, Lender T (1950a) Sur le déterminisme de la régénération des yeux chez une planaire d’eau douce Polycelis nigra. CR Séance Soc Biol 144:1213

    CAS  Google Scholar 

  • Wolff E, Lender T (1950b) Sur le role organisateur du cerveau dans la régénération des yeux chez une planaire d’eau douce. CR Acad Sci 230:2238–2239

    Google Scholar 

  • Zayas RM, Hernandez A, Habermann B, Wang Y, Stary JM, Newmark PA (2005) The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain. Proc Natl Acad Sci U S A 102:18491–18496

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I would like to thank Kiyokazu Agata, Chiyoko Kobayashi, Yoshihiko Umesono, Phillip A. Newmark, Tingxia Guo, Ricardo M. Zayas, and the laboratory of Emili Saló for helpful discussions on the planarian CNS; Hidefumi Orii and Emili Saló for their helpful comments; and Miquel Vila Farré for providing the specimens of Polycelis felina and Phagocata ullala used for the immunostaining shown in Fig. 1. I also thank Dr. Iain Patten for the advice on the English style in a version of the manuscript. The antibody 3C11 (anti-synapsin) used in Fig. 1 and developed by Dr. E. Buchner was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences, Iowa City, USA. F.C. is supported by the Beatriu de Pinós (Generalitat de Catalunya) and Ramón y Cajal (Ministery of Education and Culture, Spain) programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Cebrià.

Additional information

Communicated by R.J. Sommer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cebrià, F. Regenerating the central nervous system: how easy for planarians!. Dev Genes Evol 217, 733–748 (2007). https://doi.org/10.1007/s00427-007-0188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0188-6

Keywords

Navigation