Skip to main content
Log in

Comparative analysis of Hox paralog group 2 gene expression during Nile tilapia (Oreochromis niloticus) embryonic development

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The hindbrain and pharyngeal arch-derived structures of vertebrates are determined, at least in part, by Hox paralog group 2 genes. In sarcopterygians, the Hoxa2 gene alone appears to specify structures derived from the second pharyngeal arch (PA2), while in zebrafish (Danio rerio), either of the two Hox PG2 genes, hoxa2b or hoxb2a, can specify PA2-derived structures. We previously reported three Hox PG2 genes in striped bass (Morone saxatilis), including hoxa2a, hoxa2b, and hoxb2a and observed that only HoxA cluster genes are expressed in PA2, indicative that they function alone or together to specify PA2. In this paper, we present the cloning and expression analysis of Nile tilapia (Oreochromis niloticus) Hox PG2 genes and show that all three genes are expressed in the hindbrain and in PA2. The expression of hoxb2a in PA2 was unexpected given the close phylogenetic relationship of Nile tilapia and striped bass, both of which are members of the order Perciformes. A reanalysis of striped bass hoxb2a expression demonstrated that it is expressed in PA2 with nearly the same temporal and spatial expression pattern as its Nile tilapia ortholog. Further, we determined that Nile tilapia and striped bass hoxa2a orthologs are expressed in PA2 well beyond the onset of chondrogenesis whereas neither hoxa2b nor hoxb2a expression persist until this stage, which, according to previous hypotheses, suggests that hoxa2a orthologs in these two species function alone as selector genes of PA2 identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH (2004) Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14:1–10

    Article  PubMed  CAS  Google Scholar 

  • Baltzinger M, Ori M, Pasqualetti M, Nardi I, Rijli FM (2005) Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis. Dev Dyn 234:858–867

    Article  PubMed  CAS  Google Scholar 

  • Barrow JR, Capecchi MR (1996) Targeted disruption of the Hoxb-2 locus in mice interferes with expression of Hoxb-1 and Hoxb-4. Development 122:3817–3828

    PubMed  CAS  Google Scholar 

  • Barrow JR, Stadler HS, Capecchi MR (2000) Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 127:933–944

    PubMed  CAS  Google Scholar 

  • Benjamin M (1990) The cranial cartilages of teleosts and their classification. J Anat 169:153–172

    PubMed  CAS  Google Scholar 

  • Chandrasekhar A (2004) Turning heads: development of vertebrate branchiomotor neurons. Dev Dyn 229:143–161

    Article  PubMed  CAS  Google Scholar 

  • Davenne M, Maconochie MK, Neun R, Pattyn A, Chambon P, Krumlauf R, Rijli FM (1999) Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 22:677–691

    Article  PubMed  CAS  Google Scholar 

  • El-Serafy SS, Abdel-Hameid N-AH, Awwad MH, Azab MS (2007) DNA riboprinting analysis of Tilapia species and their hybrids using restriction fragment length polymorphisms of the small subunit ribosomal DNA. Aquac Res 38:295–303

    Article  CAS  Google Scholar 

  • Fujimura K, Okada N (2007) Development of the embryo, larva and early juvenile of Nile tilapia Oreochromis niloticus (Pisces: Cichlidae). Developmental staging system. Dev Growth Differ 49:301–324

    Article  PubMed  Google Scholar 

  • Gavalas A, Davenne M, Lumsden A, Chambon P, Rijli FM (1997) Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124:3693–3702

    PubMed  CAS  Google Scholar 

  • Hogan BM, Hunter MP, Oates AC, Crowhurst MO, Hall NE, Heath JK, Prince VE, Lieschke GJ (2004) Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Dev Biol 276:508–522

    Article  PubMed  CAS  Google Scholar 

  • Hunter M, Prince VE (2002) Zebrafish Hox paralogue group 2 genes function redundantly as selector genes to pattern the second pharyngeal arch. Dev Biol 247:367–389

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Kerem G, Yoshimoto M, Yamamoto N, Yang C-Y, Xue H-G, Ito H (2005) Somatotopic organization of the trigeminal ganglion cells in a cichlid fish, Oreochromis (Tilapia) niloticus. Brain Behav Evol 65:109–126

    Article  PubMed  Google Scholar 

  • Maconochie M, Krishnamurthy R, Nonchev S, Meier P, Manzanares M, Mitchell PJ, Krumlauf R (1999) Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 126:1483–1494

    PubMed  CAS  Google Scholar 

  • McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The Kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120:2199–2211

    PubMed  CAS  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A Medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828

    Article  PubMed  CAS  Google Scholar 

  • Nelson JS (2006) Fishes of the world. Wiley, New York

    Google Scholar 

  • Ohnemus S, Bobola N, Kanzler B, Mallo M (2001) Different levels of Hoxa2 are required for particular developmental processes. Mech Dev 108:135–147

    Article  PubMed  CAS  Google Scholar 

  • Oury F, Murakami Y, Renaud JS, Pasqualetti M, Charnay P, Ren SY, Rijli FM (2006) Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science 313:1408–1413

    Article  PubMed  CAS  Google Scholar 

  • Pasqualetti M, Ori M, Nardi I, Rijli FM (2000) Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 127:5367–5378

    PubMed  CAS  Google Scholar 

  • Popma T, Masser M (1999) Tilapia, life history and biology. Southern Regional Aquaculture Center Publication 283

  • Prince V, Lumsden A (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120:911–923

    PubMed  CAS  Google Scholar 

  • Prince VE, Moens CB, Kimmel CB, Ho RK (1998) Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development 125:393–406

    PubMed  CAS  Google Scholar 

  • Puzdrowski RL (1988) Afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. J Morphol 198:131–147

    Article  PubMed  CAS  Google Scholar 

  • Santini S, Bernardi G (2005) Organization and base composition of tilapia Hox genes: implications for the evolution of Hox clusters in fish. Gene 346:51–61

    Article  PubMed  CAS  Google Scholar 

  • Scemama JL, Hunter M, McCallum J, Prince V, Stellwag E (2002) Evolutionary divergence of vertebrate Hoxb2 expression patterns and transcriptional regulatory loci. J Exp Zool 294:285–299

    Article  PubMed  CAS  Google Scholar 

  • Scemama JL, Vernon JL, Stellwag E (2006) Differential expression of Hoxa2a and Hoxa2b genes during striped bass embryonic development. Gene Expression Pattern 6:843–848

    Article  CAS  Google Scholar 

  • Sham MH, Vesque C, Nonchev S, Marshall H, Frain M, Gupta RD, Whiting J, Wilkinson D, Charnay P, Krumlauf R (1993) The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell 72:183–196

    Article  PubMed  CAS  Google Scholar 

  • Steinke D, Salzburger W, Meyer A (2006) Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. J Mol Evol 62:772–784

    Article  PubMed  CAS  Google Scholar 

  • Stellwag EJ (1999) Hox gene duplication in fish. Semin Cell Dev Biol 10:531–540

    Article  PubMed  CAS  Google Scholar 

  • Trainor PA, Krumlauf R (2001) Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 13:698–705

    Article  PubMed  CAS  Google Scholar 

  • Vesque C, Maconochie M, Nonchev S, Ariza-McNaughton L, Kuroiwa A, Charnay P, Krumlauf R (1996) Hoxb-2 transcriptional activation in rhombomeres 3 and 5 requires an evolutionarily conserved cis-acting element in addition to the Krox-20 binding site. EMBO J 15:5383–5396

    PubMed  CAS  Google Scholar 

  • Vieille-Grosjean I, Hunt P, Gulisano M, Boncinelli E, Thorogood P (1997) Branchial HOX gene expression and human craniofacial development. Dev Biol (Orlando) 183:49–60

    CAS  Google Scholar 

  • Yan YL, Jowett T, Postlethwait JH (1998) Ectopic expression of hoxb2 after retinoic acid treatment or mRNA injection: disruption of hindbrain and craniofacial morphogenesis in zebrafish embryos. Dev Dyn 213:370–385

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an East Carolina University Research and Creative activities grant. S. N. B. was supported by NCSU Sea Grant R/MG-0605. We are grateful to Dr. Jason Bond for his help with the ML Digital Lab XLT system. We would also like to thank Dennis P. Delong and Southern Farm Tilapia for generously providing us with Nile tilapia and advice concerning their cultivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Scemama.

Additional information

Communicated by T. Hollemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Pabic, P., Stellwag, E.J., Brothers, S.N. et al. Comparative analysis of Hox paralog group 2 gene expression during Nile tilapia (Oreochromis niloticus) embryonic development. Dev Genes Evol 217, 749–758 (2007). https://doi.org/10.1007/s00427-007-0182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0182-z

Keywords

Navigation