Skip to main content
Log in

A comparison of Hox3 and Zen protein coding sequences in taxa that span the Hox3/zen divergence

  • Sequence Corner
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The class 3 Hox genes of insects have diverged—in expression domain and functional role during embryogenesis—compared to those of other bilaterians. Whereas the canonical ortholog (Hox3) is involved in axial patterning of the embryonic body, the insect ortholog (zen) is involved in extraembryonic development. In this paper, we present sequence data from the centipede Strigamia maritima, the collembolan Folsomia candida, and the insect Thermobia domestica. With these data, complete coding sequences are now known for orthologs in all four arthropod classes and all three great bilaterian clades. We make use of this large Hox3/Zen ortholog data set to define differences in the protein sequences encoded by insect zen genes compared to all other Hox3 orthologs. Folsomia and Thermobia are particularly relevant to determining when zen diverged from Hox3 over evolutionary time. Intriguingly, the orthologs of these two species have some protein sequence features typical of Hox3 and some typical of Zen, and they differ from one another for these features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bastianello A, Ronco M, Burato PA, Minelli A (2002) Hox gene sequences from the geophilomorph centipede Pachymerium ferrugineum (C.L. Koch, 1835) (Chilopoda: Geophilomorpha: Geophilidae): implications for the evolution of the Hox class genes of arthropods. Mol Phylogenet Evol 22:155–161

    Article  PubMed  CAS  Google Scholar 

  • Chipman AD, Arthur W, Akam M (2004) Early development and segment formation in the centipede, Strigamia maritima (Geophilomorpha). Evol Dev 6:78–89

    Article  PubMed  Google Scholar 

  • Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763

    Article  PubMed  CAS  Google Scholar 

  • Cook CE, Yue Q, Akam M (2005) Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proc R Soc B 272:1295–1304

    Article  PubMed  CAS  Google Scholar 

  • Falciani F, Hausdorf B, Schröder R, Akam M, Tautz D, Denell R, Brown S (1996) Class 3 Hox genes in insects and the origin of zen. Proc Natl Acad Sci USA 93:8479–8484

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (2003) Developmental Biology, 7th edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272

    Article  PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238

    PubMed  CAS  Google Scholar 

  • Hughes CL, Liu PZ, Kaufman TC (2004) Expression patterns of the rogue Hox genes Hox3/zen and fushi tarazu in the apterygote insect Thermobia domestica. Evol Dev 6:393–401

    Article  PubMed  CAS  Google Scholar 

  • In der Rieden PMJ, Mainguy G, Woltering JM, Durston AJ (2004) Homeodomain to hexapeptide or PBC-interaction-domain distance: size apparently matters. Trends Genet 20:76–79

    Article  PubMed  Google Scholar 

  • Janssen R, Damen WGM (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    Article  PubMed  CAS  Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylation–dephosphorylation of enzymes. Ann Rev Biochem 48:923–959

    Article  PubMed  CAS  Google Scholar 

  • Lee PN, Callaerts P, de Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol 40:772–794

    Article  PubMed  CAS  Google Scholar 

  • Panfilio KA, Liu PZ, Akam M, Kaufman TC (2006) Oncopeltus fasciatus zen is essential for serosal tissue function in katatrepsis. Dev Biol 292:226–243

    Article  PubMed  CAS  Google Scholar 

  • Papillon D, Telford M (2007) Evolution of Hox3 and ftz in arthropods: insights from the crustacean Daphnia pulex. Dev Genes Evol (in press)

  • Schmidt-Ott U (2005) Insect serosa: a headline in comparative developmental genetics. Curr Biol 15:R245–R247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Ariel Chipman for providing Strigamia and Thermobia RNA; Lorraine Shakesheff for assistance with degenerate PCR during a student project with K.A.P.; Max Telford for advice on shotgun sequencing and Dave Matus for advice on RACE PCR; Daniel Papillon for sharing unpublished data and assistance with the Daphnia genome; and Bárbara Negre and Richard Stancliffe for helpful comments on the manuscript. K.A.P. is supported by a Howard Hughes Medical Institute Predoctoral Fellowship. This research was supported by BBSRC grant BBS/B/07519 to M.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen Anne Panfilio.

Additional information

Communicated by P. Simpson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panfilio, K.A., Akam, M. A comparison of Hox3 and Zen protein coding sequences in taxa that span the Hox3/zen divergence. Dev Genes Evol 217, 323–329 (2007). https://doi.org/10.1007/s00427-007-0133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0133-8

Keywords

Navigation