Skip to main content
Log in

Germ-cell cluster formation in the telotrophic meroistic ovary of Tribolium castaneum (Coleoptera, Polyphaga, Tenebrionidae) and its implication on insect phylogeny

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Tribolium castaneum has telotrophic meroistic ovarioles of the Polyphaga type. During larval stages, germ cells multiply in a first mitotic cycle forming many small, irregularly branched germ-cell clusters which colonize between the anterior and posterior somatic tissues in each ovariole. Because germ-cell multiplication is accompanied by cluster splitting, we assume a very low number of germ cells per ovariole at the beginning of ovariole development. In the late larval and early pupal stages, we found programmed cell death of germ-cell clusters that are located in anterior and middle regions of the ovarioles. Only those clusters survive that rest on posterior somatic tissue. The germ cells that are in direct contact with posterior somatic cells transform into morphologically distinct pro-oocytes. Intercellular bridges interconnecting pro-oocytes are located posteriorly and are filled with fusomes that regularly fuse to form polyfusomes. Intercellular bridges connecting pro-oocytes to pro-nurse cells are always positioned anteriorly and contain small fusomal plugs. During pupal stages, a second wave of metasynchronous mitoses is initiated by the pro-oocytes, leading to linear subclusters with few bifurcations. We assume that the pro-oocytes together with posterior somatic cells build the center of determination and differentiation of germ cells throughout the larval, pupal, and adult stages. The early developmental pattern of germ-cell multiplication is highly similar to the events known from the telotrophic ovary of the Sialis type. We conclude that among the common ancestors of Neuropterida and Coleoptera, a telotrophic meroistic ovary of the Sialis type evolved, which still exists in Sialidae, Raphidioptera, and a myxophagan Coleoptera family, the Hydroscaphidae. Consequently, the telotrophic ovary of the Polyphaga type evolved from the Sialis type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkins DM (1963) The Cupedidae of the world. Can Entemol 95:140–162

    Google Scholar 

  • Berghammer A, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402:370–371

    Article  PubMed  CAS  Google Scholar 

  • Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:R85–R86

    Article  PubMed  CAS  Google Scholar 

  • Büning J (1972) Untersuchungen am Ovar von Bruchidius obtectus Say. (Coleoptera–Polyphaga) zur Klärung des Oocytenwachstums in der Prävitellogenese. Z Zellforsch 128:241–282

    Article  PubMed  Google Scholar 

  • Büning J (1978) Development of telotrophic-meroistic ovarioles of polyphage beetles with special reference to the formation of nutritive cords. J Morphol 156:237–256

    Article  Google Scholar 

  • Büning J (1979a) The trophic tissue of telotrophic ovarioles in polyphage Coleoptera. Zoomorphologie 93:33–50

    Article  Google Scholar 

  • Büning J (1979b) The trophic tissue of telotrophic ovarioles in polyphage Coleoptera. Zoomorphologie 93:51–57

    Article  Google Scholar 

  • Büning J (1979c) The telotrophic-meroistic ovary of Megaloptera I. The ontogenetic development. J Morphol 162:37–66

    Article  Google Scholar 

  • Büning J (1980) The ovary of Rhaphidia flavipes is telotrophic and of the Sialis type. Zoomorphologie 95:127–131

    Article  Google Scholar 

  • Büning J (1985) Morphology, ultrastructure, and germ cell cluster formation in ovarioles of aphids. J Morphol 186:209–221

    Article  Google Scholar 

  • Büning J (1994) The insect ovary: ultrastructure, previtellogenic growth and evolution. Chapman and Hall, London, UK

    Google Scholar 

  • Büning J (1998) The ovariole: structure, type, and phylogeny. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol. 11C. Insecta. Wiley, New York, pp 957–993

    Google Scholar 

  • Büning J (2005) The telotrophic ovary known from Neuropterida exists also in the myxophagan beetle Hydroscapha natans. Dev Genes Evol 215:597–607

    Article  PubMed  Google Scholar 

  • Crowson RA (1981) The biology of the Coleoptera. Academic, London

    Google Scholar 

  • de Cuevas M, Spradling AC (1998) The morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125:2781–2789

    PubMed  Google Scholar 

  • Deng W, Lin H (1997) Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev Biol 189:79–94

    Article  PubMed  CAS  Google Scholar 

  • Giardina A (1901) Origine dell’oocite e delle cellule nutrici nel Dytiscus. Internationale Monatsschrift für Anatomie und Physiologie 18:417–477

    Google Scholar 

  • Gottanka J, Büning J (1993) Mayflies (Ephemeroptera), the most “primitive” winged insects, have telotrophic meroistic ovaries. Roux’s Arch Dev Biol 203:18–27

    Article  Google Scholar 

  • Grieder NC, de Cuevas M, Spradling AC (2000) The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127:4253–4264

    PubMed  CAS  Google Scholar 

  • Gruzova MN (1979a) Nuclear structure in telotrophic ovarioles of the darkling beetles. I. Trophocytes of Blaps lethifera (Tenebrionidae, Polyphaga) (light and electron microscope data). Ontogenez 10:13–23

    CAS  Google Scholar 

  • Gruzova MN (1979b) Nuclear structure in telotrophic ovarioles of the nocturnal ground beetles. III. The nucleus of oocytes. Electron microscope data. Ontogenez 10:332–339

    PubMed  CAS  Google Scholar 

  • Harris MP, Hasso SM, Ferguson MWJ, Fallon JF (2006) The development of archosaurian first-generation teeth in a chicken mutant. Curr Biol 16:371–377

    Article  PubMed  CAS  Google Scholar 

  • Hörnschemeyer T (1998) Morphologie und Evolution des Flügelgelenks der Coleoptera und Neuroptera. Bonner Zool Monogr 43:1–126

    Google Scholar 

  • Huebner E, Anderson E (1972) A cytological study of the ovary of Rhodnius prolixus. III. Cytoarchitecture and development of the trophic chamber. J Morphol 138:1–40

    Article  PubMed  CAS  Google Scholar 

  • Huebner E, Diehl-Jones W (1998) Developmental biology of insect ovaries: germ cells and nurse cell oocyte polarity. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol. 11C. Insecta. Wiley, New York, pp 957–993

    Google Scholar 

  • Huynh JR, St Johnston D (2004) The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr Biol 14:R438–R449

    Article  PubMed  CAS  Google Scholar 

  • Jedrzejowska I, Kubrakiewicz J (2004) Ovariole development in telotrophic ovaries of snake flies (Rhaphidioptera). Folia Biol 52:175–184

    Article  Google Scholar 

  • King RC (1970) Ovarian development in Drosophila melanogaster. Academic Press, New York

  • Kloc M, Matuszewski B (1977) Extrachromosomal DNA and the origin of oocytes in the telotrophic-meroistic ovary of Creophilus maxillosus (L.) (Staphylinidae, Coleoptera-Polyphaga). Wilhelm Roux’s Arch 183:351–368

    Article  Google Scholar 

  • Kozhanova NI, Pasichnik M (1979) Differentiation of oocytes and nurse cells in telotrophic ovarioles of the beetle Coccinella septempunctata. Citologija 18:824–833

    Google Scholar 

  • Kristensen NP (1981) Phylogeny of insect orders. Annu Rev Entomol 26:135–157

    Article  Google Scholar 

  • Kubrakiewicz J (1997) Germ cell cluster organization in polytrophic ovaries of Neuroptera. Tissue Cell 29:221–228

    Article  PubMed  CAS  Google Scholar 

  • Kubrakiewicz J, Jedrzejowska I, Bilinski SM (1998) Neuropteroidea—different ovary structure in related groups. Folia Histochem Cytobiol 36:179–187

    PubMed  CAS  Google Scholar 

  • Kugler J-M, Rübsam R, Trauner J, Büning J (2006) The larval development of the telotrophic meroistic ovary in the bug Dysdercus intermedius (Heteroptera, Pyrrhocoridae). Arthropod Struct Dev 35:99–110

    Article  PubMed  Google Scholar 

  • Kukalova-Peck J (1991) Fossil history and the evolution of hexapod structures. In: CSIRO (ed) Insects of Australia, vol 1. pp 141–179

  • Kukalova-Peck J, Lawrence JF (1993) Evolution of the hind wing in Coleoptera. Can Entemol 125:181–258

    Google Scholar 

  • Lin H, Yue L, Spradling AC (1994) The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120:947–956

    PubMed  CAS  Google Scholar 

  • Lorenzen M, Berghammer A, Brown S, Denell R, Klingler M, Beeman R (2003) piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol 12:433–440

    Article  PubMed  CAS  Google Scholar 

  • Matuszewski B, Ciechomski K, Nurkowska J, Kloc M (1985) The linear clusters of oogonial cells in the development of telotrophic ovarioles in polyphage Coleoptera. Roux’s Arch Dev Biol 194:462–469

    Article  Google Scholar 

  • McGrail M, Hays TS (1997) The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte determination in Drosophila. Development 124:2409–2419

    PubMed  CAS  Google Scholar 

  • Mickoleit G (1973) Über den Ovipositor der Neuropteroidea und Coleoptera und seine phylogenetische Bedeutung (Insecta, Holometabola). Z Morphol Tiere 74:37–64

    Article  Google Scholar 

  • Pavlopoulos A, Berghammer A, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167:737–746

    Article  PubMed  CAS  Google Scholar 

  • Rohdendorf BB (1944) A new family of Coleoptera from the permian of the Urals. C R Acad Sci USSR 44:252–253

    Google Scholar 

  • Spradling AC (1993) Germline cysts: communes that work. Cell 72:649–651

    Article  PubMed  CAS  Google Scholar 

  • Spradling AC, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:14–18

    Article  CAS  Google Scholar 

  • Storto P, King R (1989) The role of polyfusomes in generating branched chains of cystocytes during Drosophila oogenesis. Dev Genet 10:70–86

    Article  PubMed  CAS  Google Scholar 

  • Theurkauf W, Alberts M, Jan Y, Jongens T (1993) A central role for microtubules in the differentiation of Drosophila oocytes. Development 118:1169–1180

    PubMed  CAS  Google Scholar 

  • Telfer WH (1975) Development and physiology of the oocyte–nurse cell syncytium. Adv Insect Physiol 11:223–319

    Article  Google Scholar 

  • Ullmann SL (1973) Oogenesis in Tenebrio molitor: histological and autoradiographical observations on pupal and adult ovaries. J Embryol Exp Morphol 30:179–217

    PubMed  CAS  Google Scholar 

  • Whiting MF, Bradler S, Maxwell T (2003) Loss and recovery of wings in stick insects. Nature 421:264–267

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi H, Yoshitake N (1982) Origin and differentiation of the oocyte-nurse cell complex in the germarium of the earwig, Anisolabis maritima Borelli (Dermaptera, Labiduridae). Int J Insect Morphol Embryol 11:293–305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Büning.

Additional information

Communicated by S. Roth

Electronic Supplementary Material

Below is the image is a link to a high resolution version.

Supplementary Fig. S1

Pro-oocytes are connected by transverse bridges. a Part of section 97 showing that part of the germarial region in which pro-oocytes nest on the posterior somatic tissue (pS). Pro-oocytes are connected to each other by eccentrically localized intercellular bridges next to posterior somatic tissue. Huge areas of fusomal material stretch between neighboring bridges. All pro-oocytes are apparently larger than any other germ cell found in anterior regions. Lateral germ cells are bordered by inner sheath cells (iS), while germ cells of interior regions border each other or some rare somatic interstitial cells (not shown). b The drawing from the original section 97 shows pro-oocytes (numbered, magenta), and, in addition, the connections to pronurse cells (lighter magenta) depicted from other sections nearby. These bridges are shown in dark red as well as all fusomal regions (dark red stippling) of the nearby sections. b The drawing shows all germ cells of the posterior region of the germarium of section 97. Numbers written in pro-oocytes (magenta) refer to the numbers given in Fig. 5. Most of the pro-oocytes are directly connected to each other by intercellular bridges (thickened lines). Four pro-oocytes are connected to pronurse cells (lighter magenta) by intercellular bridges. Fusomal areas are shown by colored dots. A polyfusome stretches through most of the pro-oocyte–pro-oocyte intercellular bridges. The pro-oocyte–pronurse-cell intercellular bridges are filled with smaller fusomal areas. All intercellular bridges as well as those parts of the fusomes that can be seen on section 97 are drawn in lighter magenta, while all the intercellular bridges as well as those parts of the fusomes that can be seen on nearby sections are drawn in dark red (JPG 195 428 kb)

427_2006_114_Fig8_ESM.tif

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trauner, J., Büning, J. Germ-cell cluster formation in the telotrophic meroistic ovary of Tribolium castaneum (Coleoptera, Polyphaga, Tenebrionidae) and its implication on insect phylogeny. Dev Genes Evol 217, 13–27 (2007). https://doi.org/10.1007/s00427-006-0114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0114-3

Keywords

Navigation