Skip to main content
Log in

Evolution of teleostean hatching enzyme genes and their paralogous genes

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

We isolated genes for hatching enzymes and their paralogs having two cysteine residues at their N-terminal regions in addition to four cysteines conserved in all the astacin family proteases. Genes for such six-cysteine-containing astacin proteases (C6AST) were searched out in the medaka genome database. Five genes for MC6AST1 to 5 were found in addition to embryo-specific hatching enzyme genes. RT-PCR and whole-mount in situ hybridization evidenced that MC6AST1 was expressed in embryos and epidermis of almost all adult tissues examined, while MC6AST2 and 3 were in mesenterium, intestine, and testis. MC6AST4 and 5 were specifically expressed in jaw. In addition, we cloned C6AST cDNA homologs from zebrafish, ayu, and fugu. The MC6AST1 to 5 genes were classified into three groups in the phylogenetic positions, and the expression patterns and hatching enzymes were clearly discriminated from other C6ASTs. Analysis of the exon–intron structures clarified that genes for hatching enzymes MHCE and MAHCE were intron-less, while other MC6AST genes were basically the same as the gene for another hatching enzyme MLCE. In the basal Teleost, the C6AST genes having the ancestral exon–intron structure (nine exon/eight intron structure) first appeared by duplication and chromosomal translocation. Thereafter, maintaining such ancestral exon–intron structure, the LCE gene was newly diversified in Euteleostei, and the MC6AST1 to 5 gene orthologs were duplicated and diversified independently in respective fish lineages. The HCE gene lost all introns in Euteleostei, whereas in the lineage to zebrafish, it was translocated from chromosome to chromosome and lost some of its introns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MHCE:

medaka high choriolytic enzyme

MAHCE:

medaka acidic high choriolytic enzyme

MLCE:

medaka low choriolytic enzyme

MC6AST:

medaka six-cysteine-containing astacin family protease

AyHCE:

ayu high choriolytic enzyme

AyLCE:

ayu low choriolytic enzyme

AyNep:

ayu nephrosin

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358

    Article  PubMed  CAS  Google Scholar 

  • Barnes K, Ingram J, Kenny AJ (1989) Proteins of the kidney microvillar membrane. Structural and immunochemical properties of rat endopeptidase-2 and its immunohistochemical localization in tissues of rat and mouse. Biochem J 264:335–346

    PubMed  CAS  Google Scholar 

  • Bode W, Gomis-Ruth FX, Stockler W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 331:134–140

    Article  PubMed  CAS  Google Scholar 

  • Bond JS, Beynon RJ (1995) The astacin family of metalloendopeptidases. Protein Sci 4:1247–1261

    Article  PubMed  CAS  Google Scholar 

  • Butler PE, McKay MJ, Bond JS (1987) Characterization of meprin, a membrane-bound metalloendopeptidase from mouse kidney. Biochem J 241:229–235

    PubMed  CAS  Google Scholar 

  • Ehrlich J, Sankoff D, Nadeau JH (1997) Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics 147:289–296

    PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  • Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33(Web Server issue):W557–559

    Article  PubMed  CAS  Google Scholar 

  • Hiroi J, Maruyama K, Kawazu K, Kaneko T, Ohtani-Kaneko R, Yasumasu S (2004) Structure and developmental expression of hatching enzyme genes of the Japanese eel Anguilla Japonica: an aspect of the evolution of fish hatching enzyme gene. Dev Genes Evol 214:176–184

    Article  PubMed  CAS  Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    Article  PubMed  CAS  Google Scholar 

  • Hung CH, Huang HR, Huang CJ, Huang FL, Chang GD (1997) Purification and cloning of carp nephrosin, a secreted zinc endopeptidase of the astacin family. J Biol Chem 272:13772–13778

    Article  PubMed  CAS  Google Scholar 

  • Inohaya K, Yasumasu S, Ishimaru M, Ohyama A, Iuchi I, Yamagami K (1995) Temporal and spatial patterns of gene expression for the hatching enzyme in the teleost embryo, Oryzias latipes. Dev Biol 171:374–385

    Article  PubMed  CAS  Google Scholar 

  • Inohaya K, Yasumasu S, Araki K, Naruse K, Yamazaki K, Yasumasu I, Iuchi I, Yamagami K (1997) Species-dependent migration of fish hatching gland cells that express astacin-like proteases in common. Dev Growth Differ 39:191–197

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii”. Mol Phylogenet Evol 27:476–488

    Article  PubMed  CAS  Google Scholar 

  • Iwamatsu T (1994) Stages of normal development in the medaka Oryzias latipes. Zoolog Sci 11:825–839

    Google Scholar 

  • Katagiri C, Maeda R, Yamashika C, Mita K, Sargent TD, Yasumasu S (1997) Molecular cloning of Xenopus hatching enzyme and its specific expression in hatching gland cells. Int J Dev Biol 41:19–25

    PubMed  CAS  Google Scholar 

  • Kawaguchi M, Yasumasu S, Shimizu A, Hiroi J, Yoshizaki N, Nagata K, Tanokura M, Iuchi I (2005a) Purification and gene cloning of Fundulus heteroclitus hatching enzyme. A hatching enzyme system composed of high choriolytic enzyme and low choriolytic enzyme is conserved between two different teleosts, Fundulus heteroclitus and medaka Oryzias latipes. FEBS J 272:4315–4326

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi M, Yasumasu S, Hiroi J, Iuchi I (2005b) Evolution of hatching enzyme genes in teleost. Zool Sci 22:1394–1395

    Article  Google Scholar 

  • Kijimoto T, Watanabe M, Fujimura K, Nakazawa M, Murakami Y, Kuratani S, Kohara Y, Gojobori T, Okada N (2005) cimp1, a novel astacin family metalloproteinase gene from East African cichlids, is differentially expressed between species during growth. Mol Biol Evol 22:1649–1660

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Warga RM, Schilling TF (1990) Origin and organization of the zebrafish fate map. Development 108:581–594

    PubMed  CAS  Google Scholar 

  • Lee KS, Yasumasu S, Nomura K, Iuchi I (1994) HCE, a constituent of the hatching enzymes of Oryzias latipes embryos, releases unique proline-rich polypeptides from its natural substrate, the hardened chorion. FEBS Lett 339:281–284

    Article  PubMed  CAS  Google Scholar 

  • Lindsay LL, Wallace MA, Hedrick JL (2001) A hatching enzyme substrate in the Xenopus laevis egg envelope is a high molecular weight ZPA homolog. Dev Growth Differ 43:305–313

    Article  PubMed  CAS  Google Scholar 

  • Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828

    Article  PubMed  CAS  Google Scholar 

  • Nelson JS (1994) Fishes of the World, 3rd edn. Wiley, New York

    Google Scholar 

  • Olivotto I, Yasumasu S, Gioacchini G, Maradonna F, Cionna C, Carnevali O (2004) Cloning and expression of high choriolytic enzyme, a component of the hatching enzyme system, during embryonic development of the marine ornamental fish Chrysiptera prasema. Mar Biol 145:1235–1241

    Article  CAS  Google Scholar 

  • Padgett RA, Grabowski PJ, Konarska MM, Seiler S, Sharp PA (1986) Splicing of messenger RNA precursors. Ann Rev Biochem 55:1119–1150

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM (1997) Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91:407–416

    Article  PubMed  CAS  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (1981) Speculations on RNA splicing. Cell 23:643–646

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, Iwamatsu T, Oba Y, Kobayashi D, Tanaka M, Nagahama Y, Suzuki N, Yoshikuni M (2000) Identification and cDNA cloning of alveolin, an extracellular metalloproteinase, which induces chorion hardening of medaka (Oryzias latipes) eggs upon fertilization. J Biol Chem 275:8349–8354

    Article  PubMed  CAS  Google Scholar 

  • Shimell MJ, Ferguson EL, Childs SR, O’Connor MB (1991) The Drosophila dorsal–ventral patterning gene tolloid is related to human bone morphogenetic protein 1. Cell 67:469–481

    Article  PubMed  CAS  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13:382–390

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Titani K, Torff HJ, Hormel S, Kumar S, Walsh KA, Rodl J, Neurath H, Zwilling R (1987) Amino acid sequence of a unique protease from the crayfish Astacus fluviatilis. Biochemistry 26:222–226

    Article  PubMed  CAS  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    PubMed  CAS  Google Scholar 

  • Wittbrodt J, Meyer A, Schartl M (1998) More genes in fish? Bioessays 20:511–515

    Article  Google Scholar 

  • Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  PubMed  CAS  Google Scholar 

  • Yamagami K (1972) Isolation of a choriolytic enzyme (hatching enzyme) of the teleost, Oryzias latipes. Dev Biol 29:343–348

    Article  PubMed  CAS  Google Scholar 

  • Yamagami K (1992) Studies on the hatching enzyme and its substrate, egg envelope of Oryzias latipes. Zoological Science 9:1131

    Google Scholar 

  • Yamagami K (1996) Studies on the hatching enzyme (choriolysin) and its substrate, egg envelope, constructed of the precursors (choriogenins) in Oryzias latipes: a sequel to the information in 1991/1992. Zoological Science 13:331–340

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Pollock GH, Nagase H, Sarras MP Jr (1995) A 25.7×10(3) M(r) hydra metalloproteinase (HMP1), a member of the astacin family, localizes to the extracellular matrix of Hydra vulgaris in a head-specific manner and has a developmental function. Development 121:1591–1602

    PubMed  CAS  Google Scholar 

  • Yasumasu S, Iuchi I, Yamagami K (1988) Medaka hatching enzyme consists of two kinds of proteases which act cooperatively. Zoological Science 5:191–195

    CAS  Google Scholar 

  • Yasumasu S, Iuchi I, Yamagami K (1989a) Purification and partial characterization of high choriolytic enzyme (HCE), a component of the hatching enzyme of the teleost, Oryzias latipes. J Biochem 105:204–211

    PubMed  CAS  Google Scholar 

  • Yasumasu S, Iuchi I, Yamagami K (1989b) Isolation and some properties of low choriolytic enzyme (LCE), a component of the hatching enzyme of the teleost, Oryzias latipes. J Biochem 105:212–218

    PubMed  CAS  Google Scholar 

  • Yasumasu S, Yamada K, Akasaka K, Mitsunaga K, Iuchi I, Shimada H, Yamagami K (1992a) Isolation of cDNAs for LCE and HCE, two constituent proteases of the hatching enzyme of Oryzias latipes, and concurrent expression of their mRNAs during development. Dev Biol 153:250–258

    Article  PubMed  CAS  Google Scholar 

  • Yasumasu S, Katow S, Hamazaki TS, Iuchi I, Yamagami K (1992b) Two constituent proteases of a teleostean hatching enzyme: concurrent syntheses and packaging in the same secretory granules in discrete arrangement. Dev Biol 149:349–356

    Article  PubMed  CAS  Google Scholar 

  • Yasumasu S, Iuchi I, Yamagami K (1994) cDNAs and the genes of HCE and LCE, two constituents of the medaka hatching enzyme. Dev Growth Differ 36:241–250

    Article  CAS  Google Scholar 

  • Yasumasu S, Shimada H, Inohaya K, Yamazaki K, Iuchi I, Yasumasu I, Yamagami K (1996) Different exon–intron organizations of the genes for two astacin-like proteases, high choriolytic enzyme (choriolysin H) and low choriolytic enzyme (choriolysin L), the constituents of the fish hatching enzyme. Eur J Biochem 237:752–758

    Article  PubMed  CAS  Google Scholar 

  • Yasumasu S, Mao KM, Sultana F, Sakaguchi H, Yoshizaki N (2005) Cloning of a quail homologue of hatching enzyme: its conserved function and additional function in egg envelope digestion. Dev Genes Evol 215:489–498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We express our cordial thanks to Dr. K. Yamagami, former Professor of Developmental Biology, Life Science Institute, Sophia University, Tokyo, for giving us valuable advice and for reading the present manuscript. The present study was supported in part by a Grant-in-aid for Scientific Research (C) from J.S.P.S. to I. I. (No. 17570189) and S. Y. (No. 15570102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Iuchi.

Additional information

Communicated by M. Hammerschmidt

The nucleotide sequence data reported in the present paper will appear in the DDBJ/EMBL/GenBank nucleotide sequence databases with accession numbers from AB256940 to AB256952.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

A multiple alignment of amino acid sequences deduced from C6AST cDNAs of medaka (MHCE, MAHCE, MLCE and MC6AST1 to 5) and ayu (AyHCE, AyLCE1, AyLCE2 and AyNep). White and black triangles indicate the putative signal sequence cleavage sites and the N-terminals of mature enzymes, respectively. Arrows indicate the intron insertion sites for MLCE (intron 1-7), AyLCE1 (intron 1-8), AyLCE2 (intron 2-8), MC6AST1 and MC6AST4 and 5 (intron 1-8), MC6AST2 (intron 1, 3-8) and MC6AST3 (intron 1, 3-7). Identical residues are boxed. Dashes and asterisks represent gaps and stop codons, respectively. Two active site consensus sequences of the astacin family proteases are indicated in dark and light gray boxes, and conserved cysteine residues are in black boxes. Accession numbers: MHCE, M96170; MAHCE, AB256944; MLCE, M96169; MC6AST1, AB256945; MC6AST2, AB256946; MC6AST3, AB256947; MC6AST4, AB256948; MC6AST5, AB256949; AyHCE, AB256940; AyLCE1, AB256941 (3734 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawaguchi, M., Yasumasu, S., Hiroi, J. et al. Evolution of teleostean hatching enzyme genes and their paralogous genes. Dev Genes Evol 216, 769–784 (2006). https://doi.org/10.1007/s00427-006-0104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0104-5

Keywords

Navigation