Skip to main content
Log in

The specification of a highly derived arthropod appendage, the Drosophila labial palps, requires the joint action of selectors and signaling pathways

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The remarkable diversity of form in arthropods reflects flexible genetic programs deploying many conserved genes. In the insect model Drosophila melanogaster, diversity of form can be observed between serially homologous appendages or when a single appendage is transformed by homeotic mutations, such as the adult labial mouthparts that can present alternative antennal, prothoracic, or maxillary identities. We have examined the roles of the Hox selector genes proboscipedia (pb) and Sex combs reduced (Scr), and the antennal selectors homothorax (hth) and spineless (ss) in labial specification, by tissue-directed mitotic recombination. Whereas loss of pb function transforms labium to prothoracic leg, loss of Scr, hth, or ss functions results in little or no change in labial specification. Results of analysis of single and multiple mutant combinations support a genetic hierarchy in which the homeotic pb gene possesses a primary role. It is surprising to note that while loss of ss activity alone had no detected effect, all mutant combinations lacking both pb and ss yielded the most severe phenotype observed: stunted, apparently tripartite legs that may correspond to a default state. The roles of the four selector genes are functionally linked to a cell nonautonomous mechanism involving the coupled activities of the decapentaplegic (dpp)/TGF-β and wingless (wg)/Wnt signaling pathways. Accordingly, several mutant combinations impaired in dpp signaling were seen to reorient labial-to-leg transformations toward antennal aristae. A crucial aspect of selector function in development and evolution may be in regulating diffusible signals, including those emitted by dpp and wg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Shaar M, Mann RS (1998) Generation of multiple antagonistic domains along the proximodistal axis during Drosophila leg development. Development 125:3821–3830

    PubMed  CAS  Google Scholar 

  • Abzhanov A, Kaufman TC (2000) Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol 227:673–689

    Article  PubMed  CAS  Google Scholar 

  • Abzhanov A, Holtzman S, Kaufman TC (2001) The Drosophila proboscis is specified by two Hox genes, proboscipedia and Sex combs reduced, via repression of leg and antennal appendage genes. Development 128:2803–2814

    PubMed  CAS  Google Scholar 

  • Angelini DR, Kaufman, TC (2005) Insect appendages and comparative ontogenetics. Dev Biol 286:57–77

    Article  PubMed  CAS  Google Scholar 

  • Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214

    Article  PubMed  CAS  Google Scholar 

  • Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J, Lin X (2002) Pygopus encodes a nuclear protein essential for wingless/Wnt signaling. Development 129:4089–4101

    PubMed  CAS  Google Scholar 

  • Bridges CB, Dobzhansky T (1933) The mutant “proboscipedia” in Drosophila melanogaster—a case of heredity homoösis. Wilhelm Roux Arch Dev Biol 127:575–590

    Article  Google Scholar 

  • Brook WJ, Cohen SM (1996) Antagonistic interactions between wingless and decapentaplegic responsible for dorsal-ventral pattern in the Drosophila leg. Science 273:1373–1377

    PubMed  CAS  Google Scholar 

  • Brusca RC, Brusca GJ (2002) Invertebrates. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Burke R, Basler K (1996) Dpp receptors are autonomously required for cell proliferation in the entire developing Drosophila wing. Development 122:2261–2269

    PubMed  CAS  Google Scholar 

  • Casares F, Mann RS (1998) Control of antennal versus leg development in Drosophila. Nature 392:723–726

    Article  PubMed  CAS  Google Scholar 

  • Casares F, Mann RS (2001) The ground state of the ventral appendage in Drosophila. Science 293:1477–1480

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Knezevic V, Ervin V, Hutson R, Ward Y, Mackem S (2004) Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh. Development 131:2339–2347

    Article  PubMed  CAS  Google Scholar 

  • Cohen S (1993) Imaginal disc development. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p 1564

    Google Scholar 

  • DiNardo S, Kuner JM, Theis J, O’Farrell PH (1985) Development of embryonic pattern in D. melanogaster as revealed by accumulation of the nuclear Engrailed protein. Cell 43:59–69

    Article  PubMed  CAS  Google Scholar 

  • Dong PD, Chu J, Panganiban G (2000) Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity. Development 127:209–216

    PubMed  CAS  Google Scholar 

  • Dong PD, Dicks JS, Panganiban G (2002) Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development 129:1967–1974

    PubMed  CAS  Google Scholar 

  • Duncan DM, Burgess EA, Duncan I (1998) Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev 12:1290–1303

    PubMed  CAS  Google Scholar 

  • Emerald BS, Roy JK (1997) Homeotic transformation in Drosophila. Nature 389:684

    Article  PubMed  CAS  Google Scholar 

  • Emerald BS, Cohen SM (2001) Limb development: getting down to the ground state. Curr Biol 11:R1025–R1027

    Article  Google Scholar 

  • Emerald BS, Cohen SM (2004) Spatial and temporal regulation of the homeotic selector gene Antennapedia is required for the establishment of leg identity in Drosophila. Dev Biol 267:462–472

    Article  PubMed  CAS  Google Scholar 

  • Emerald BS, Curtiss J, Mlodzik M, Cohen SM (2003) Distal antenna and distal antenna related encode nuclear proteins containing pipsqueak motifs involved in antenna development in Drosophila. Development 130:1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Estrada B, Sanchez-Herrero E (2001) The Hox gene Abdominal-B antagonizes appendage development in the genital disc of Drosophila. Development 128:331–339

    PubMed  CAS  Google Scholar 

  • Gebelein B, McKay DJ, Mann RS (2004) Direct integration of Hox and segmentation gene inputs during Drosophila development. Nature 431:653–659

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB (1988) A community effect in animal development. Nature 336:772–774

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk J, DiNardo S (1994) Drosophila hedgehog acts as a morphogen in cellular patterning. Cell 76:449–460

    Article  PubMed  CAS  Google Scholar 

  • Hersh BM, Carroll SB (2005) Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila. Development 132:1567–1577

    Article  PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2000) RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127:3683–3694

    PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Mito T, Miyawaki K, Matsushima K, Shinmyo Y, Heanue TA, Mardon G, Ohuchi H, Noji S (2002) Correlation of expression patterns of homothorax, dachshund and Distal-less with the proximodistal segmentation of the cricket leg bud. Mech Dev 113:141–148

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Struhl G (1996) Complementary and mutually exclusive activities of decapentaplegic and wingless organize axial patterning during Drosophila leg development. Cell 86:401–409

    Article  PubMed  CAS  Google Scholar 

  • Johnston LA, Schubiger G (1996) Ectopic expression of wingless in imaginal discs interferes with decapentaplegic expression and alters cell determination. Development 122:3519–3529

    PubMed  CAS  Google Scholar 

  • Joulia L, Bourbon HM, Cribbs DL (2005) Homeotic proboscipedia function modulates hedgehog-mediated organizer activity to pattern adult Drosophila mouthparts. Dev Biol 278:496–510

    Article  PubMed  CAS  Google Scholar 

  • Kaufman TC (1978) Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: isolation and characterization of four new alleles of the proboscipedia (pb) locus. Genetics 90:579–596

    PubMed  Google Scholar 

  • Kaufman TC, Seeger MA, Olsen G (1990) Molecular and genetic organization of the Antennapedia gene complex of Drosophila melanogaster. Adv Genet 27:309–362

    Article  PubMed  CAS  Google Scholar 

  • Kojima T (2004) The mechanism of Drosophila leg development along the proximodistal axis. Dev Growth Differ 46:115–129

    Article  PubMed  CAS  Google Scholar 

  • Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Zullig S, Basler K (2002) Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 109:47–60

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Ouweneel WJ, Faber J (1979) Differentiation capacities of the labial imaginal disc of Drosophila melanogaster. Wilhelm Roux Arch Dev Biol 186:51–64

    Article  Google Scholar 

  • Lecuit T, Cohen SM (1997) Proximal-distal axis formation in the Drosophila leg. Nature 388:139–145

    Article  PubMed  CAS  Google Scholar 

  • Lee JJ, von Kessler DP, Parks S, Beachy PA (1992) Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71:33–50

    Article  PubMed  CAS  Google Scholar 

  • Letsou A, Arora K, Wrana JL, Simin K, Twombly V, Jamal J, Staehling-Hampton K, Hoffmann FM, Gelbart WM, Massague J et al (1995) Drosophila Dpp signaling is mediated by the punt gene product: a dual ligand-binding type II receptor of the TGF beta receptor family. Cell 80:899–908

    Article  PubMed  CAS  Google Scholar 

  • Maves L, Schubiger G (1995) Wingless induces transdetermination in developing Drosophila imaginal discs. Development 121:1263–1272

    PubMed  CAS  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    Article  PubMed  CAS  Google Scholar 

  • Morata G, Ripoll P (1975) Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev Biol 42:211–221

    Article  PubMed  CAS  Google Scholar 

  • Newsome TP, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127:851–860

    PubMed  CAS  Google Scholar 

  • Nielsen C (1998) The phylogenetic position of the Arthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 11–22

    Google Scholar 

  • Parker DS, Jemison J, Cadigan KM (2002) Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 129:2565–2576

    PubMed  CAS  Google Scholar 

  • Pattatucci AM, Kaufman TC (1991) The homeotic gene Sex combs reduced of Drosophila melanogaster is differentially regulated in the embryonic and imaginal stages of development. Genetics 129:443–461

    PubMed  CAS  Google Scholar 

  • Penton A, Hoffmann FM (1996) Decapentaplegic restricts the domain of wingless during Drosophila limb patterning. Nature 382:162–164

    Article  PubMed  CAS  Google Scholar 

  • Percival-Smith A, Weber J, Gilfoyle E, Wilson P (1997) Genetic characterization of the role of the two HOX proteins, Proboscipedia and Sex Combs Reduced, in determination of adult antennal, tarsal, maxillary palp and proboscis identities in Drosophila melanogaster. Development 124:5049–5062

    PubMed  CAS  Google Scholar 

  • Prpic NM, Tautz D (2003) The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 260:97–112

    Article  PubMed  CAS  Google Scholar 

  • Prpic NM, Wigand B, Damen WG, Klingler M (2001) Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol 211:467–477

    Article  PubMed  CAS  Google Scholar 

  • Raff RA (1987) Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins. Dev Biol 119:6–19

    Article  PubMed  CAS  Google Scholar 

  • Ruberte E, Marty T, Nellen D, Affolter M, Basler K (1995) An absolute requirement for both the type II and type I receptors, punt and thick veins, for dpp signaling in vivo. Cell 80:889–897

    Article  PubMed  CAS  Google Scholar 

  • Simin K, Bates EA, Horner MA, Letsou A (1998) Genetic analysis of punt, a type II Dpp receptor that functions throughout the Drosophila melanogaster life cycle. Genetics 148:801–813

    PubMed  CAS  Google Scholar 

  • Struhl G (1982) Genes controlling segmental specification in the Drosophila thorax. Proc Natl Acad Sci USA 79:7380–7384

    Article  PubMed  CAS  Google Scholar 

  • Suzanne M, Estella C, Calleja M, Sanchez-Herrero E (2003) The hernandez and fernandez genes of Drosophila specify eye and antenna. Dev Biol 260:465–483

    Article  PubMed  CAS  Google Scholar 

  • Tabata T, Kornberg TB (1994) Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76:89–102

    Article  PubMed  CAS  Google Scholar 

  • Tabata T, Eaton S, Kornberg TB (1992) The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev 6:2635–2645

    PubMed  CAS  Google Scholar 

  • Thompson BJ (2004) A complex of Armadillo, Legless, and Pygopus coactivates dTCF to activate wingless target genes. Curr Biol 14:458–466

    Article  PubMed  CAS  Google Scholar 

  • Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M (2002) A new nuclear component of the Wnt signalling pathway. Nat Cell Biol 4:367–373

    Article  PubMed  CAS  Google Scholar 

  • Townsley FM, Thompson B, Bienz M (2004) Pygopus residues required for its binding to Legless are critical for transcription and development. J Biol Chem 279:5177–5183

    Article  PubMed  CAS  Google Scholar 

  • Vachon G, Cohen B, Pfeifle C, McGuffin ME, Botas J, Cohen SM (1992) Homeotic genes of the Bithorax—complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell 71:437–450

    Article  PubMed  CAS  Google Scholar 

  • Yao LC, Liaw GJ, Pai CY, Sun YH (1999) A common mechanism for antenna-to-leg transformation in Drosophila: suppression of homothorax transcription by four HOM-C genes. Dev Biol 211:268–276

    Article  PubMed  CAS  Google Scholar 

  • Zakany J, Kmita M, Duboule D (2004) A dual role for Hox genes in limb anterior-posterior asymmetry. Science 304:1669–1672

    Article  PubMed  CAS  Google Scholar 

  • Zecca M, Basler K, Struhl G (1995) Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121:2265–2278

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues in Toulouse for many helpful discussions and Fernando Roch and Corinne Benassayag for their critical readings of versions of the manuscript. The monoclonal antibodies directed against Wg (4D4, developed by S. Cohen) and Dac proteins (developed by G. M. Rubin) used in this work were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the National Institute of Child Health and Human Development and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242, USA. Mouse anti-Dll, the plasmid sscA6 harboring a ss cDNA, and the ss D115-7 allele were provided by Dr. I. Duncan; rabbit anti-Hth and the hth 5E chromosome by A. Salzberg; rat anti-Dan by S. Cohen, FRT Scr 1 and FRT pb 27 Scr 2 by A. Percival-Smith. We thank Agnès Lepage for her expert technical assistance and Bruno Savelli and Brice Ronsin for their help with the confocal microscope. This work benefited from the ongoing support of the Centre National de Recherche Scientifique (CNRS) and grants from the Association pour la Recherche sur le Cancer (ARC). L. J. was supported by graduate fellowships from the French Ministère de l’Education Nationale et de la Recherche and the Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Cribbs.

Additional information

Communicated by guest editors Jean Deutsch and Gerhard Scholtz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joulia, L., Deutsch, J., Bourbon, HM. et al. The specification of a highly derived arthropod appendage, the Drosophila labial palps, requires the joint action of selectors and signaling pathways. Dev Genes Evol 216, 431–442 (2006). https://doi.org/10.1007/s00427-006-0086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0086-3

Keywords

Navigation