Skip to main content

Advertisement

Log in

DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Planarian regeneration, based upon totipotent stem cells, the neoblasts, provides a unique opportunity to study in vivo the molecular program that defines a stem cell. In this study, we report the identification of DjPiwi-1, a planarian homologue of Drosophila Piwi. Expression analysis showed that DjPiwi-1 transcripts are preferentially accumulated in small cells distributed along the midline of the dorsal parenchyma. DjPiwi-1 transcripts were not detectable after X-ray irradiation by whole mount in situ hybridization. Real time reverse transcriptase polymerase chain reaction analysis confirmed the significant reduction of DjPiwi-1 expression after X-ray treatment. However, the presence of residual DjPiwi-1 transcription suggests that, although the majority of DjPiwi-1-positive cells can be neoblasts, this gene is also expressed in differentiating/differentiated cells. During regeneration DjPiwi-1-positive cells reorganize along the midline of the stump and no accumulation of hybridization signal was observed either in the blastema area or in the parenchymal region beneath the blastema. DjPiwi-1-positive cells, as well as the DjMCM2-expressing neoblasts located along the midline and those spread all over the parenchyma, showed a lower tolerance to X-ray with respect to the DjMCM2-expressing neoblasts distributed along the lateral lines of the parenchyma. Taken together, these findings suggest the presence of different neoblast subpopulations in planarians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agata K (2003) Regeneration and gene regulation in planarians. Curr Opin Genet Dev 13:492–496

    CAS  PubMed  Google Scholar 

  • Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM (1998) ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 29:145–155

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Baguñà J (1998) Planarians. In: Ferretti P, Geraudie J (eds) The cellular and molecular basis of regeneration: from invertebrates to humans. Wiley, New York pp 135–165

    Google Scholar 

  • Baguñà J, Salo E, Romero R (1989) Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. Int J Dev Biol 33:261–266

    PubMed  Google Scholar 

  • Brφndsted HV (1969) Planarian regeneration. Pergamon Press, p 278

  • Cebrià F, Kobayashi C, Umesono Y, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Itoh M, Taira M, Sánchez Alvarado A, Agata K (2002) FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419:620–624

    PubMed  ADS  Google Scholar 

  • Cerutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci 25:481–482

    CAS  PubMed  Google Scholar 

  • Chen D, McKearin D (2005) Gene circuitry controlling a stem cell niche. Curr Biol 15:179–184

    CAS  PubMed  Google Scholar 

  • Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12:3715–3727

    CAS  PubMed  Google Scholar 

  • Cox DN, Chao A, Lin H (2000) Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127:503–514

    CAS  PubMed  Google Scholar 

  • de Waard H, de Wit J, Gorgels TG, van den Aardweg G, Andressoo JO, Vermeij M, van Steeg H, Hoeijmakers JH, van der Horst GT (2003) Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair (Amst) 2:13–25

    Google Scholar 

  • Deng W, Lin H (2001) Asymmetric germ cell division and oocyte determination during Drosophila oogenesis. Int Rev Cytol 203:93–138

    Article  CAS  PubMed  Google Scholar 

  • Deri P, Colognato R, Rossi L, Salvetti A, Batistoni R (1999) A karyological study on populations of Dugesia gonocephala s.l. (Turbellaria, Tricladida). Ital J Zool 66:245–253

    Google Scholar 

  • Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, Saigo K (2003) Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol 13:41–46

    CAS  PubMed  Google Scholar 

  • Forbes A, Lehmann R (1998) Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125:679–690

    CAS  PubMed  Google Scholar 

  • Gremigni V (1981) The problem of cell totipotency, dedifferentiation and transdifferentiation in Turbellaria. Hydrobiologia 32:171–179

    Google Scholar 

  • Hong Y, Stambrook PJ (2004) Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci USA 101:14443–14448

    CAS  PubMed  ADS  Google Scholar 

  • Hori I (1992) Cytological approach to morphogenesis in the planarian blastema. I. Cell behavior during blastema formation. J Submicrosc Cytol Pathol 24:75–84

    Google Scholar 

  • Hori I, Kishida Y (2003) Quantitative changes in nuclear pores and chromatoid bodies induced by neuropeptides during cell differentiation in the planarian Dugesia japonica. J Submicrosc Cytol Pathol 35:439–444

    CAS  PubMed  Google Scholar 

  • King FJ, Szakmary A, Cox DN, Lin H (2001) Yb modulates the divisions of both germline and somatic stem cells through piwi- and hh-mediated mechanisms in the Drosophila ovary. Mol Cell 7:497–508

    CAS  PubMed  Google Scholar 

  • Kobayashi C, Nogi T, Watanabe K, Agata K (1999) Ectopic pharynxes arise by regional reorganization after anterior/posterior chimera in planarians. Mech Dev 89:25–34

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Hoshi M (2002) Witching from asexual to sexual reproduction in the planarian Dugesia ryukyuensis: change of the fissiparous capacity along with the sexualizing process. Zoolog Sci 19:661–666

    PubMed  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Yomogida K, Kuroiwa A, Tadokoro Y, Fujita Y, Sato M, Matsuda Y, Nakano T (2001) Two mouse piwi-related genes: miwi and mili. Mech Dev 108:121–133

    CAS  PubMed  Google Scholar 

  • Lange CS (1968a) An outline of studies on the cellular basis of planarian radiation lethality. J Physiol 197:54P–55P

    CAS  PubMed  Google Scholar 

  • Lange CS (1968b) A possible explanation in cellular terms of the physiological ageing of the planarian. Exp Gerontol 3:219–230

    CAS  PubMed  Google Scholar 

  • Lin H, Schagat T (1997) Neuroblasts: a model for the asymmetric division of stem cells. Trends Genet 13:33–39

    CAS  PubMed  Google Scholar 

  • Lin H, Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124:2463–2476

    CAS  PubMed  Google Scholar 

  • Ma J-B, Yuan Y-R, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670

    CAS  PubMed  ADS  Google Scholar 

  • Mineta K, Nakazawa M, Cebrià F, Ikeo K, Agata K, Gojobori T (2003) Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Proc Natl Acad Sci USA 100:7666–7671

    PubMed  ADS  Google Scholar 

  • Morrison SJ, Wright DE, Cheshier SH, Weissman IL (1997) Hematopoietic stem cells: challenges to expectations. Curr Opin Immunol 9:216–221

    CAS  PubMed  Google Scholar 

  • Moussian B, Schoof H, Haecker A, Jürgens G, Laux T (1998) Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J 17:1799–1809

    CAS  PubMed  Google Scholar 

  • Moussian B, Haecker A, Laux T (2003) ZWILLE buffers meristem stability in Arabidopsis thaliana. Dev Genes Evol 213:534–540

    CAS  PubMed  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    CAS  PubMed  Google Scholar 

  • Ogawa K, Kobayashi C, Hayashi T, Orii H, Watanabe K, Agata K (2002) Planarian fibroblast growth factor receptor homologs expressed in stem cells and cephalic ganglions. Dev Growth Differ 44:191–204

    CAS  PubMed  Google Scholar 

  • Orii H, Agata K, Watanabe K (1993) POU-domain genes in planarian Dugesia japonica: the structure and expression. Biochem Biophys Res Commun 192:1395–1402

    CAS  PubMed  Google Scholar 

  • Orii H, Sakurai T, Watanabe K (2005) Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev Genes Evol 215:143–157

    CAS  PubMed  Google Scholar 

  • Pal-Bhadra M, Bhadra U, Birchler JA (2002) RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 9:315–327

    CAS  PubMed  Google Scholar 

  • Parker JS, Roe SM, Barford D (2005) Structural insights into mRNA recognition from a Piwi domain-siRNA guide complex. Nature 434:663–666

    CAS  PubMed  ADS  Google Scholar 

  • Pedersen KJ (1972) Studies on regeneration blastemas of the planarian Dugesia tigrina with special reference to differentiation of the muscle-connective tissue filament system. Wilhelm Roux’ Arch Entwickl Mech 169:134–169

    Google Scholar 

  • Pineda D, Rossi L, Batistoni R, Salvetti A, Marsal M, Gremigni V, Falleni A, Gonzalez-Linares J, Deri P, Salò E (2002) The genetic network of prototypic planarian eye regeneration is Pax6 independent. Development 129:1423–1434

    CAS  PubMed  Google Scholar 

  • Potten CS (1977) Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature 269:518–521

    CAS  PubMed  ADS  Google Scholar 

  • Reddien PW, Sánchez Alvarado A (2004) Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20:725–757

    CAS  PubMed  Google Scholar 

  • Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A (2005a) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8:635–649

    CAS  PubMed  Google Scholar 

  • Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A (2005b) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310:1327–1330

    CAS  PubMed  ADS  Google Scholar 

  • Salvetti A, Batistoni R, Deri P, Rossi L, Sommerville J (1998) Expression of DjY1, a protein containing a cold shock domain and RG repeat motifs, is targeted to sites of regeneration in planarians. Dev Biol 201:217–229

    CAS  PubMed  Google Scholar 

  • Salvetti A, Rossi L, Deri P, Batistoni R (2000) An MCM2-related gene is expressed in proliferating cells of intact and regenerating planarians. Dev Dyn 218:603–614

    CAS  PubMed  Google Scholar 

  • Salvetti A, Rossi L, Lena A, Batistoni R, Deri P, Rainaldi G, Locci MT, Evangelista M, Gremigni V (2005) DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132:1863–1874

    CAS  PubMed  Google Scholar 

  • Salò E, Baguñà J (2002) Regeneration in planarians and other worms: new findings, new tools, and new perspectives. J Exp Zool 292:528–539

    PubMed  Google Scholar 

  • Sánchez Alvarado A, Newmark PA, Robb SM, Juste R (2002) The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129:5659–5665

    PubMed  Google Scholar 

  • Sharma AK, Nelson MC, Brandt JE, Wessman M, Mahmud N, Weller KP, Hoffman R (2001) Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood 97:426–434

    CAS  PubMed  Google Scholar 

  • Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206:73–87

    CAS  PubMed  Google Scholar 

  • Smulders-Srinivasan TK, Lin H (2003) Screens for piwi suppressors in Drosophila identify dosage-dependent regulators of germline stem cell division. Genetics 165:1971–1991

    CAS  PubMed  Google Scholar 

  • Szakmary A, Cox DN, Wang Z, Lin H (2005) Regulatory relationship among piwi, pumilio, and bag-of-marbles in Drosophila germline stem cell self-renewal and differentiation. Curr Biol 15:171–178

    CAS  PubMed  Google Scholar 

  • Tan C-H, Lee T-C, Weeraratne SD, Korzh V, Lim T-M, Gong Z (2002) Ziwi, the zebrafish homologue of the Drosophila Piwi: co-localization with vasa at the embryonic genital ridge and gonad-specific expression in the adults. Mech Dev 119(Suppl 1):S221–S224

    PubMed  Google Scholar 

  • Tijsterman M, Okihara KL, Thijssen K, Plasterk RH (2002) PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans. Curr Biol 12:1535–1540

    CAS  PubMed  Google Scholar 

  • Umesono Y, Watanabe K, Agata K (1997) A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain. Dev Growth Differ 39:723–727

    CAS  PubMed  Google Scholar 

  • van Sloun PPH, Jansen JG, Weeda G, Mullenders LHF, van Zeeland AAM, Lohman PH, Vrieling H (1999) The role of nucleotide excision repair in protecting embryonic stem cells from genotoxic effects of UV-induced DNA damage. Nucleic Acids Res 27:3276–3282

    PubMed  Google Scholar 

  • Vaucheret H, Béclin C, Fagard M (2001) Post-transcriptional gene silencing in plants. J Cell Sci 114:3083–3091

    CAS  PubMed  Google Scholar 

  • Xu Y (2005) A new role for p53 in maintaining genetic stability in embryonic stem cells. Cell Cycle 4:363–364

    CAS  PubMed  Google Scholar 

  • Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM (2000) High-fidelity mRNA amplification for gene profiling. Nat Biotechnol 18:457–459

    CAS  PubMed  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    CAS  PubMed  ADS  Google Scholar 

  • Yamashita YM, Fuller MT, Jones DL (2005) Signaling in stem cell niches: lessons from the Drosophila germline. J Cell Sci 118:665–672

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are especially grateful to Kiyokazu Agata for providing us with the planarian GI clonal strain and for the in situ hybridization protocol. We also thank Claudio Ghezzani for technical assistance with TEM and Mrs. Tamar Shanks for English revision. Grant Sponsor: Programmi di Ricerca di Interesse Nazionale, MIUR, Italy. Leonardo Rossi and Alessandra Salvetti have equally contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Gremigni.

Additional information

Communicated by M.Q. Martindale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, L., Salvetti, A., Lena, A. et al. DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev Genes Evol 216, 335–346 (2006). https://doi.org/10.1007/s00427-006-0060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0060-0

Keywords

Navigation