Skip to main content
Log in

Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The sea anemone Nematostella vectensis has recently been established as a new model system for the understanding of the evolution of developmental processes. In particular, the evolutionary origin of gastrulation and its molecular regulation are the subject of intense investigation. However, while molecular data are rapidly accumulating, no detailed morphological data exist describing the process of gastrulation. Here, we carried out an ultrastructural study of different stages of gastrulation in Nematostella using transmission electron microscope and scanning electron microscopy techniques. We show that presumptive endodermal cells undergo a change in cell shape, reminiscent of the bottle cells known from vertebrates and several invertebrates. Presumptive endodermal cells organize into a field, the pre-endodermal plate, which undergoes invagination. In parallel, the endodermal cells decrease their apical cell contacts but remain loosely attached to each other. Hence, during early gastrulation they display an incomplete epithelial–mesenchymal transition (EMT). At a late stage of gastrulation, the cells eventually detach and fill the interior of the blastocoel as mesenchymal cells. This shows that gastrulation in Nematostella occurs by a combination of invagination and late immigration involving EMT. The comparison with molecular expression studies suggests that cells expressing snailA undergo EMT and become endodermal, whereas forkhead/brachyury expressing cells at the ectodermal margin of the blastopore retain their epithelial integrity throughout gastrulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arendt D (2004) Comparative aspects of gastrulation. In: Stern C (ed) Gastrulation: from cells to embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Ball EE, Hayward DC, Reece-Hoyes JS, Hislop NR, Samuel G, Saint R, Harrison PL, Miller DJ (2002) Coral development: from classical embryology to molecular control. Int J Dev Biol 46:671–678

    PubMed  CAS  Google Scholar 

  • Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161

    Article  PubMed  CAS  Google Scholar 

  • Benesch R (1969) Zur Ontogenie und Morphologie von Artemia salina. Zool Jb Anat 86:307–458

    Google Scholar 

  • Byrum CA (2001) An analysis of hydrozoan gastrulation by unipolar ingression. Dev Biol 240:627–640

    Article  PubMed  CAS  Google Scholar 

  • Byrum CA, Martindale MQ (2004) Gastrulation in the Cnidaria and Ctenophora. In: Stern C (ed) Gastrulation: from cells to embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  PubMed  CAS  Google Scholar 

  • Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in development and metabolism. Dev Biol 250:1–23

    Article  PubMed  CAS  Google Scholar 

  • Collins AG (2002) Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc Natl Acad Sci U S A 95:15258–15463

    Google Scholar 

  • Darling JA, Reitzel AR, Burton PM, Mazza ME, Ryan JF, Sullivan JC, Finnerty JR (2005) Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays 2:211–221

    Article  CAS  Google Scholar 

  • Davidson LA, Oster GF, Keller RE, Koehl MAR (1999) Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev Biol 209:221–238

    Article  PubMed  CAS  Google Scholar 

  • del Barrio MG, Nieto MA (2002) Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development 129:1583–1593

    PubMed  Google Scholar 

  • Finnerty JR, Pank K, Burton P, Paulson D, Martindale MQ (2004) Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 304:1335–1337

    Article  PubMed  CAS  Google Scholar 

  • Fritzenwanker JH, Technau U (2002) Induction of gametogenesis in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol 212:99–103

    Article  PubMed  Google Scholar 

  • Fritzenwanker JH, Saina M, Technau U (2004) Analysis of forkhead and snail expression reveals epithelial–mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275:389–402

    Article  PubMed  CAS  Google Scholar 

  • Gemmill JF (1920) The development of the sea anemones Metridium dianthus (Ellis) and Adamsia palliata (Bohad). Philos Trans R Soc Lond B 209:357–367

    Article  Google Scholar 

  • Gross JM, McClay DR (2001) The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegates. Dev Biol 239:132–147

    Article  PubMed  CAS  Google Scholar 

  • Haeckel E (1874) The Gastraea—theory, the phylogenetic classification of the animal kingdom and the homology of germ-lamellae. Q J Microsc Sci 14:142–165

    Google Scholar 

  • Hand C, Uhlinger KR (1992) The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 182:169–176

    Article  Google Scholar 

  • Hayward DC, Miller DJ, Ball EE (2004) Snail expression during embryonic development of the coral Acropora: blurring the diploblast/triploblast divide? Dev Genes Evol 214:257–260

    Article  PubMed  Google Scholar 

  • Hyde I (1894) Entwicklungsgeschichte einiger Scyphomedusen. Zeitschrift Wiss Zool 58:553–563

    Google Scholar 

  • Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium–mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Katow H, Sollursh M (1980) Ultrustructure of primary mesenchyme cell ingression in the sea urchin Lytechinus pictus. J Exp Zoolog 213:231–246

    Article  Google Scholar 

  • Keller R, Davidson L, Shook D (2003) How we are shaped: the biomechanics of gastrulation. Differentiation 71:171–205

    Article  PubMed  Google Scholar 

  • Kim J, Kim W, Cunningham CW (1999) A new perspective on lower metazoan relationships from 18S rDNA sequences. Mol Biol Evol 16:423–427

    PubMed  CAS  Google Scholar 

  • Kimberly EL, Hardin J (1998) Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev Biol 204:235–250

    Article  PubMed  CAS  Google Scholar 

  • Kraus YA, Cherdantsev VG (1999) Variability and equifinality in the early morphogenesis of the marine hydroid, Dynamena pumila. Russ J Dev Biol 30:118–129

    Google Scholar 

  • Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    Article  PubMed  CAS  Google Scholar 

  • Leptin M, Roth S (1994) Autonomy and non-autonomy in Drosophila mesoderm determination and morphogenesis. Development 120:853–859

    PubMed  CAS  Google Scholar 

  • Locascio A, Nieto MA (2001) Cell movements during vertebrate development: integrated tissue behavior versus individual cell migration. Curr Opin Genet Dev 11:464–469

    Article  PubMed  CAS  Google Scholar 

  • Martin VJ, Thomas M (1977) A fine structural study of embryonic and larval development in the gimnoblastic hydroid Pennaria tiarella. Biol Bull 153:198–218

    Article  PubMed  CAS  Google Scholar 

  • Martin VJ, Littefield, JCL, Archer WE, Bode HR (1997) Embryogenesis in Hydra. Biol Bull 192:345–363

    Article  PubMed  CAS  Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum Cnidaria; class, Anthozoa). Development 131:2463–2474

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Nat Acad Sci U S A 98:9707–9712

    Article  CAS  Google Scholar 

  • Metchnikoff E (1886) Embryologische Studien an Medusen. Ein Beitrag zur Genealogie der Primitiv-Organe. Alfred Holder, Vienna

    Google Scholar 

  • Miyoshi A, Kitajima Y, Kido S, Shimonishi T, Matsuyama S, Kitahara K, Miyazaki K (2005) Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 92:252–258

    PubMed  CAS  Google Scholar 

  • Newby WW (1940) The embryology of Echiuroid worm Urechis caupo. Mem Am Philos Soc 16:1–219

    Google Scholar 

  • Nieto MA (2002) The Snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155–166

    Article  PubMed  CAS  Google Scholar 

  • Oda H, Tsukita S (2000) Real-time imaging of cell–cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J Cell Sci 114:493–501

    Google Scholar 

  • Prindull G, Zipori D (2004) Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood 103:2892–2899

    Article  PubMed  CAS  Google Scholar 

  • Rattenbeury J (1954) The embryology of Phoronis viridis. J Morphol 95:289–334

    Article  Google Scholar 

  • Rodimov A (2000) A history of embryonic development of Bougainvillia superciliaris. News of St. Petersburg University 2(11):122–126

    Google Scholar 

  • Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. BioEssays 23(10):912–923

    Article  PubMed  CAS  Google Scholar 

  • Schaefer W (1985) Fortpflanzung und Entwicklung von Anemonia sulcata (Anthozoa, Actiniaria). II. Fruehentwicklung, Blastula und Gastrula. Helgolaender Meeresunters 39:341–356

    Article  Google Scholar 

  • Scholz CB, Technau U (2003) The ancestral role of Brachyury: expression of Nembra1 in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol 212:563–570

    PubMed  CAS  Google Scholar 

  • Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev 120:1351–1383

    Article  PubMed  CAS  Google Scholar 

  • Showell C, Binder O, Conlon FL (2004) T-box genes in early embryogenesis. Dev Dyn 229:201–218

    Article  PubMed  CAS  Google Scholar 

  • Tardent P (1978) Coelenterata. Cnidaria. VEB Gustav Fischer, Jena

    Google Scholar 

  • Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47:531–539

    PubMed  Google Scholar 

  • Weigel D, Jurgens G, Kuttner F, Seiffert E, Jackle H (1989) The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57:645–658

    Article  PubMed  CAS  Google Scholar 

  • Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426:446–450

    Article  PubMed  CAS  Google Scholar 

  • Wulfert J (1902) Die Embryonalyentwicklung von Gonothyraea loveni. Allg Zeitschrift Wiss Zool 71:296–325

    Google Scholar 

Download references

Acknowledgements

We thank Jens Fritzenwanker and Tom Clarke for critically reading the manuscript. We also thank the members of the Laboratory of Electron Microscopy of Moscow State University (G.N. Davidovich, A.G. Bogdanov, N. Zvonkova, M. Leontieva, A. Lazarev, N.Y. Agalakova) for support and assistance. This work was supported by the DFG and the core budget of the Sars Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Technau.

Additional information

Communicated by M.Q. Martindale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, Y., Technau, U. Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study. Dev Genes Evol 216, 119–132 (2006). https://doi.org/10.1007/s00427-005-0038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0038-3

Keywords

Navigation