Skip to main content
Log in

Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

We documented expression of the pan-metazoan neurogenic gene engrailed in larval and juvenile Patiriella sea stars to determine if this gene patterns bilateral and radial echinoderm nervous systems. Engrailed homologues, containing conserved En protein domains, were cloned from the radial nerve cord. During development, engrailed was expressed in ectodermal (nervous system) and mesodermal (coeloms) derivatives. In larvae, engrailed was expressed in cells lining the larval and future adult coeloms. Engrailed was not expressed in the larval nervous system. As adult-specific developmental programs were switched on during metamorphosis, engrailed was expressed in the central nervous system and peripheral nervous system (PNS), paralleling the pattern of neuropeptide immunolocalisation. Engrailed was first seen in the developing nerve ring and appeared to be up-regulated as the nervous system developed. Expression of engrailed in the nerve plexus of the tube feet, the lobes of the hydrocoel along the adult arm axis, is similar to the reiterated pattern of expression seen in other animals. Engrailed expression in developing nervous tissue reflects its conserved role in neurogenesis, but its broad expression in the adult nervous system of Patiriella differs from the localised expression seen in other bilaterians. The role of engrailed in patterning repeated PNS structures indicates that it may be important in patterning the fivefold organisation of the ambulacrae, a defining feature of the Echinodermata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abzhanov A, Kaufman TC (2000) Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev Genes Evol 210:493–506

    Article  PubMed  CAS  Google Scholar 

  • Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud'homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Natl Acad Sci U S A 97:4453–4456

    Article  PubMed  CAS  Google Scholar 

  • Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643

    PubMed  CAS  Google Scholar 

  • Arendt D, Nübler-Jung K (1999) Comparison of early nerve cord development in insects and vertebrates. Development 126:2309–2325

    PubMed  CAS  Google Scholar 

  • Bromham LD, Degnan BM (1999) Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate+echinoderm clade. Evol Dev 1:166–171

    Article  PubMed  CAS  Google Scholar 

  • Byrne M, Cisternas P (2002) Development and distribution of the peptidergic system in larval and adult Patiriella: comparison of sea star bilateral and radial nervous systems. J Comp Neurol 451:101–114

    Article  PubMed  CAS  Google Scholar 

  • Byrne M, Cisternas P, Koop D (2001) Evolution of larval form in the sea star genus Patiriella: conservation and change in the nervous system. Dev Growth Differ 43:459–468

    Article  PubMed  CAS  Google Scholar 

  • Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci U S A 97:4469–4474

    Article  PubMed  CAS  Google Scholar 

  • Chee F, Byrne M (1999) Development of the serotonergic system in the larvae of the sea star Patiriella regularis as revealed by confocal imaging. Biol Bull 197:123–131

    Article  Google Scholar 

  • Davidson EH (2001) Genomic regulatory systems. Academic, San Diego

    Google Scholar 

  • Dolecki GJ, Humphreys T (1988) An engrailed class homeobox gene in sea urchins. Gene 64:21–31

    Article  PubMed  CAS  Google Scholar 

  • Dolmatov IY, Eliseikina MG, Bulgakov AA, Ginanova TT, Lamashand NE, Korchagin VP (1996) Muscle regeneration in the holothurian Stichopus japonicus. Roux's Arch Dev Biol 205:486–493

    Article  Google Scholar 

  • Eizema K, Koster JG, Stegeman BI, Baarends WM, Lanser PH, Destree OHJ (1994) Comparative analysis of Engrailed-1 and Wnt-1 expression in the developing central nervous system of Xenopus laevis. Int J Dev Biol 38:623–632

    PubMed  CAS  Google Scholar 

  • Ekker M, Wegner J, Akimenko MA, Westerfield M (1992) Coordinate embryonic expression of three zebrafish engrailed genes. Development 116:1001–1010

    PubMed  CAS  Google Scholar 

  • Garstang W (1894) Preliminary note on a new theory of the phylogeny of the Chordata. Zool Anz 27:122–125

    Google Scholar 

  • Glavic A, Gomez-Skarmeta JL, Mayor R (2002) The homeo-protein Xiro1 is required for midbrain–hindbrain boundary formation. Development 129:1609–1621

    PubMed  CAS  Google Scholar 

  • Hata K, Bremiller R, Westerfield M, Kimmel CB (1991) Diversity of expression of engrailed-like antigens in zebrafish. Development 112:821–832

    PubMed  Google Scholar 

  • Holland ND (2003) Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 4:1–11

    Article  CAS  Google Scholar 

  • Holland LZ, Holland ND (1998) Developmental gene expression in amphioxus: new insights into the evolutionary origin of vertebrate brain regions, neural crest, and rostrocaudal segmentation. Am Zool 38:647–658

    CAS  Google Scholar 

  • Holland LZ, Keen M, Williams NA, Holland ND (1997) Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment–polarity homolog in Drosophila. Development 124:1123–1732

    Google Scholar 

  • Joyner AI (1996) Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet 12:15–20

    Article  PubMed  CAS  Google Scholar 

  • Koop D (2000) Development and evolution of the nervous system in the sea star Patiriella exigua. BSc Hons Thesis, University of Sydney

  • Lacalli TC (1994) Apical organs, epithelial domains, and the origin of the chordate nervous system. Am Zool 34:533–541

    Google Scholar 

  • Long SC, Byrne M (2001) Evolution of the echinoderm Hox gene cluster. Evol Dev 3:302–311

    Article  PubMed  CAS  Google Scholar 

  • Long SC, Morris VB, Byrne M (2000) Seven Hox gene sequences from the asterinid starfish Patiriella exigua (Echinodermata: Asteroidea). Hydrobiologia 420:95–98

    Article  CAS  Google Scholar 

  • Long S, Martinez P, Chen W-C, Thorndyke M, Byrne M (2003) Evolution of echinoderms may not have required modification of the ancestral deuterostome HOX gene cluster: first report of PG4 and PG5 Hox orthologues in echinoderms. Dev Genes Evol 213:573–576

    Article  PubMed  CAS  Google Scholar 

  • Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721

    Article  PubMed  CAS  Google Scholar 

  • Lowe CJ, Issel-Tarver L, Wray GA (2002) Gene expression and larval evolution: changing roles of distal-less and orthodenticle in echinoderm larvae. Evol Dev 4:111–123

    Article  PubMed  CAS  Google Scholar 

  • Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M (2003) Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113:853–865

    Article  PubMed  CAS  Google Scholar 

  • Mazzone F, Byrne M (2001) The haemal sinus—a possible conduit for migratory cells involved in repair and regeneration of the radial nerve cord in Coscinasterias muricata following autotomy. In: Barker MF (ed) Echinoderms 2000. Balkema, Lisse, pp 167–191

    Google Scholar 

  • Moore SJ, Thorndyke MC (1993) Immunocytochemical mapping of novel echinoderm neuropeptide SALMFamide 1 (S1) in the starfish Asterias rubens. Cell Tissue Res 274:605–618

    Article  PubMed  CAS  Google Scholar 

  • Morris VB, Byrne M (2005) Involvement of two Hox genes and Otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens. J Exp Zoolog Part B Mol Dev Evol 304B (in press)

  • Morris VB, Zhao JT, Shearman D, Byrne M, Frommer M (2004) The expression of an Otx gene in the adult rudiment and the developing central nervous system in the vestibula larva of the sea urchin Holopneustes purpurescens. Int J Dev Biol 48:2–17

    Article  Google Scholar 

  • Moss C, Hunter J, Thorndyke MC (1998) Pattern of bromodeoyxyuridine incorporation and neuropeptide immunoreactivity during arm regeneration in the starfish Asterias rubens. Philos Trans R Soc Lond B 353:421–436

    Article  CAS  Google Scholar 

  • Neilsen MG, Popodi E, Minsuk S, Raff RA (2003) Evolutionary convergence in Otx expression in the pentameral adult rudiment in direct-developing sea urchins. Dev Genes Evol 213:73–82

    PubMed  Google Scholar 

  • Neuman SJ, Thorndyke MC (1993) Localisation and mapping of gamma aminobutyric acid (GABA)-like immunoreactivity in the echinoderm Asterias rubens. Cell Tissue Res 278:177–185

    Article  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman K, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989) Expression of engrailed proteins in arthropods, annelids and chordates. Cell 58:955–968

    Article  PubMed  CAS  Google Scholar 

  • Peterson MD, Popadic A, Kaufman TC (2000) The expression of two engrailed-related genes in an apterygote insect and a phylogenetic analysis of insect engrailed-related genes. Dev Genes Evol 208:547–557

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Seaver EC, Paulson DA, Irvine SQ, Martindale MQ (2001) The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaeptopterus, does not support a role in body axis segmentation. Dev Biol 236:195–209

    Article  PubMed  CAS  Google Scholar 

  • Simon HH, Saueresig H, Wurst W, Goulding MD, O'Leary DD (2001) Fate of midbrain dopaminergic neurons controlled by the Engrailed genes. J Neurosci 21:3126–3134

    PubMed  CAS  Google Scholar 

  • Sly BJ, Hazel JC, Popodi EM, Raff RR (2002) Patterns of gene expression in the developing adult sea urchin central nervous system reveal multiple domains and deep-seated neural pentamery. Evol Dev 4:189–204

    Article  PubMed  CAS  Google Scholar 

  • Swalla BJ, Cameron CB, Corley LS, Garey JR (2000) Urochordates are monophyletic within the deuterostomes. Syst Biol 49:52–64

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thorndyke MC, Carnevali MD (2001) Regeneration neurohormones and growth factors in echinoderms. Can J Zool 79:1–38

    Article  Google Scholar 

  • Thorndyke MC, Chen W-C, Beesley PW, Patruno M (2001) Molecular approaches to echinoderm regeneration. Microsc Res Tech 55:474–485

    Article  PubMed  CAS  Google Scholar 

  • Turbeville JM, Schulz JR, Raff RA (1994) Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Mol Biol Evol 11:648–655

    PubMed  CAS  Google Scholar 

  • Wada H, Satoh N (1994) Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. J Mol Evol 38:41–49

    Article  PubMed  CAS  Google Scholar 

  • Wisconsin Package (1995) Program manual for the Wisconsin Package, version 8.1-Unix. Genetics Computer Group, Madison

    Google Scholar 

  • Wray GA, Lowe CJ (2000) Developmental regulatory genes and echinoderm evolution. Syst Biol 49:28–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. S. Renn, Dr. A. Cerra, D. Lowe and D. Koop who assisted with the research. Dr. V. Morris and K. Steiner provided advice on whole mount ISH. Dr. Morris and Dr. P. Selvakumaraswamy commented on, and assisted with, the manuscript. The work was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Byrne.

Additional information

Communicated by N. Satoh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, M., Cisternas, P., Elia, L. et al. Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars. Dev Genes Evol 215, 608–617 (2005). https://doi.org/10.1007/s00427-005-0018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0018-7

Keywords

Navigation