Skip to main content
Log in

Comparative analysis of Wingless patterning in the embryonic grasshopper eye

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The signaling factor Wingless regulates multiple steps during the postembryonic development of the Drosophila eye. To obtain insight into the molecular regulation of embryonic eye development in primitive insects, we studied the expression of wg and genes projected to interact with wg in the grasshopper Schistocerca americana. We find that the dynamic and complex expression of wg in the early grasshopper procephalon results in three paired expression domains with relevance to eye primordium development. By comparison with Drosophila, these domains are compatible with a conserved function of wg during anteroposterior and dorsoventral axis formation by repression of retinal differentiation and stimulation of tissue proliferation. This is further supported by the expression of grasshopper orthologs of the retina determination genes sine oculis and eyes absent, and by inhibition of retina differentiation in grasshopper eye primordia cultured with LiCl. Surprisingly, the expression of wg and the grasshopper orthologs of pannier, fringe, Delta, and Iroquois complex is inconsistent with induction of midline centered Notch signaling activity, which is essential for Drosophila retina development. Similarly substantial evolutionary divergence is found concerning the control of retina versus head epidermis specification. The transcription factor Extradenticle (Exd), which cooperates with wg in specifying the Drosophila head epidermis, is not detected outside the labral and antennal primordia in the embryonic grasshopper head. Our results, which provide the first insight into the molecular control of eye primordium formation in primitive insects, suggest substantial modification of this process during the evolution of the Drosophila mode of postembryonic eye development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abzhanov A, Kaufman TC (2000) Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol 227:673–689

    Article  CAS  PubMed  Google Scholar 

  • Ahmed Y, Hayashi S, Levine A, Wieschaus E (1998) Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Cell 93:1171–1182

    Google Scholar 

  • Angelini DR, Kaufman TC (2004) Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev Biol 271:306–321

    Google Scholar 

  • Aspland SE, White RA (1997) Nucleocytoplasmic localisation of extradenticle protein is spatially regulated throughout development in Drosophila. Development 124:741–747

    Google Scholar 

  • Baker NE (1988a) Localization of transcripts from the wingless gene in whole Drosophila embryos. Development 103:289–298

    Google Scholar 

  • Baker NE (1988b) Transcription of the segment-polarity gene wingless in the imaginal discs of Drosophila, and the phenotype of a pupal-lethal wg mutation. Development 102:489–497

    Google Scholar 

  • Baker NE (2002) Notch and the patterning of ommatidial founder cells in the developing Drosophila eye. In: Moses K (ed) Drosophila eye development results and problems in cell differentiation 37. Springer-Verlag, Berlin Heidelberg New York, pp 5–19

    Google Scholar 

  • Baonza A, Freeman M (2001) Notch signalling and the initiation of neural development in the Drosophila eye. Development 128:3889–3898

    Google Scholar 

  • Baonza A, Freeman M (2002) Control of Drosophila eye specification by Wingless signalling. Development 129:5313–5322

    Google Scholar 

  • Bentley D, Keshishian H, Shankland M, Toroian-Raymond A (1979) Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol 54:47–74

    Google Scholar 

  • Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS (2002) Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev 16:2415–2427

    Google Scholar 

  • Bonini NM, Leiserson WM, Benzer S (1993) The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72:379–395

    Google Scholar 

  • Boyan GS, Williams JL, Reichert H (1995) Morphogenetic reorganization of the brain during embryogenesis in the grasshopper. J Comp Neurol 361:429–440

    Google Scholar 

  • Cadigan KM (2002) Wnt signaling—20 years and counting. Trends Genet 18:340–342

    Google Scholar 

  • Cadigan KM, Nusse R (1996) Wingless signaling in the Drosophila eye and embryonic epidermis. Development 122:2801–2812

    Google Scholar 

  • Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11:3286–3305

    Google Scholar 

  • Cadigan KM, Jou AD, Nusse R (2002) Wingless blocks bristle formation and morphogenetic furrow progression in the eye through repression of Daughterless. Development 129:3393–3402

    Google Scholar 

  • Calleja M, Herranz H, Estella C, Casal J, Lawrence P, Simpson P, Morata G (2000) Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. Development 127:3971–3980

    Google Scholar 

  • Casares F, Mann RS (1998) Control of antennal versus leg development in Drosophila. Nature 392:723–726

    Google Scholar 

  • Cavodeassi F, Diez Del Corral R, Campuzano S, Dominguez M (1999) Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126:4933–4942

    Google Scholar 

  • Chanut F, Heberlein U (1997) Role of decapentaplegic in initiation and progression of the morphogenetic furrow in the developing Drosophila retina. Development 124:559–567

    Google Scholar 

  • Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996

    Article  CAS  PubMed  Google Scholar 

  • Cho KO, Choi KW (1998) Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature 396:272–276

    Google Scholar 

  • Cho KO, Chern J, Izaddoost S, Choi KW (2000) Novel signaling from the peripodial membrane is essential for eye disc patterning in Drosophila. Cell 103:331–342

    Google Scholar 

  • Damen WG (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250

    CAS  PubMed  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  CAS  PubMed  Google Scholar 

  • Dearden P, Akam M (2000) A role for Fringe in segment morphogenesis but not formation in the grasshopper, Schistocerca gregaria. Genes Dev Evol 210:329–336

    Google Scholar 

  • Dearden PK, Akam M (2001) Early embryo patterning in the grasshopper, Schistocerca gregaria: wingless, decapentaplegic and caudal expression. Development 128:3435–3444

    CAS  PubMed  Google Scholar 

  • Dietrich W (1909) Die Facettenaugen der Dipteren. Z Wiss Zool 92:465–539

    Google Scholar 

  • Dominguez M, de Celis JF (1998) A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396:276–278

    Google Scholar 

  • Dong Y, Dinan L, Friedrich M (2003) The effect of manipulating ecdysteroid signaling on embryonic eye development in the locust Schistocerca americana. Dev Genes Evol 213:587–600

    Google Scholar 

  • Duman-Scheel M, Pirkl N, Patel NH (2002a) Analysis of the expression pattern of Mysidium columbiae wingless provides evidence for conserved mesodermal and retinal patterning processes among insects and crustaceans. Dev Genes Evol 212:114–123

    Article  CAS  PubMed  Google Scholar 

  • Duman-Scheel M, Weng, L, Xin S, Du W (2002b) Hedgehog regulates cell growth and proliferation by inducing cyclin D and cyclin E. Nature 417:299–304

    Google Scholar 

  • Fanto M, McNeill H (2004) Planar polarity from flies to vertebrates. J Cell Sci 117:527–533

    Google Scholar 

  • Freeman M, Bienz M (2001) EGF receptor/Rolled MAP kinase signalling protects cells against activated Armadillo in the Drosophila eye. EMBO Rep 2:157–162

    Google Scholar 

  • Friedrich M (2003) Evolution of insect eye development: first insights from fruit fly, grasshopper and flour beetle. Am Zool 43:508–521

    Google Scholar 

  • Friedrich M, Benzer S (2000) Divergent decapentaplegic expression patterns in compound eye development and the evolution of insect metamorphosis. J Exp Zool 288:39–55

    Article  CAS  PubMed  Google Scholar 

  • Gibson MC, Schubiger G (2000) Peripodial cells regulate proliferation and patterning of Drosophila imaginal discs. Cell 103:343–350

    Google Scholar 

  • Gomez-Skarmeta JL, Diez del Corral R, de la Calle-Mustienes E, Ferre-Marco D, Modolell J (1996) Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85:95–105

    Google Scholar 

  • Gompel N, Carroll SB (2003) Genetic mechanisms and constraints governing the evolution of correlated traits in drosophilid flies. Nature 424:931–935

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Crespo S, Morata G (1996) Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite. Development 122:3921–3928

    Google Scholar 

  • Green P, Hartenstein AY, Hartenstein V (1993) The embryonic development of the Drosophila visual system. Cell Tissue Res 273:583–598

    CAS  PubMed  Google Scholar 

  • Haynie JL, Bryant PJ (1986) Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J Exp Zool 237:293–308

    Google Scholar 

  • Hazelett DJ, Bourouis M, Walldorf U, Treisman JE (1998) Decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125:3741–3751

    CAS  PubMed  Google Scholar 

  • Heberlein U, Borod ER, Chanut FA (1998) Dorsoventral patterning in the Drosophila retina by wingless. Development 125:567–577

    Google Scholar 

  • Heitzler P, Haenlin M, Ramain P, Calleja M, Simpson P (1996) A genetic analysis of pannier, a gene necessary for viability of dorsal tissues and bristle positioning in Drosophila. Genetics 143:1271–1286

    Google Scholar 

  • Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280

    Article  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed, and wingless in a centipede. Dev Biol 247:47–61

    Article  CAS  PubMed  Google Scholar 

  • Hwang UW, Friedrich M, Tautz D, Park, CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157

    Article  CAS  PubMed  Google Scholar 

  • Irvine KD, Wieschaus E (1994) Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79:595–606

    Google Scholar 

  • Janssen R, Prpic NM, Damen WG (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104

    Article  CAS  PubMed  Google Scholar 

  • Jaw TJ, You LR, Knoepfler PS, Yao LC, Pai CY, Tang CY, Chang LP, Berthelsen J, Blasi F, Kamps MP, Sun YH (2000) Direct interaction of two homeoproteins, homothorax and extradenticle, is essential for EXD nuclear localization and function. Mech Dev 91:279–291

    Google Scholar 

  • Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002) Shaggy/GSK3 antagonizes hedgehog signalling by regulating Cubitus interruptus. Nature 416:548–552

    Google Scholar 

  • Kaphingst K, Kunes S (1994) Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell 78:437–448

    Google Scholar 

  • Kumar JP, Moses K (2001) The EGF receptor and Notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development. Development 128:2689–2697

    Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    Google Scholar 

  • Lee JD, Treisman JE (2001) The role of Wingless signaling in establishing the anteroposterior and dorsoventral axes of the eye disc. Development 128:1519–1529

    Google Scholar 

  • Lee JD, Treisman JE (2002) Regulators of the morphogenetic furrow. In: Moses K (ed) Drosophila eye development results and problems in cell differentiation 37. Springer-Verlag, Berlin Heidelberg New York, pp 21–34

    Google Scholar 

  • Lin HV, Rogulja A, Cadigan KM (2004) Wingless eliminates ommatidia from the edge of the developing eye through activation of apoptosis. Development 131:2409–2418

    Google Scholar 

  • Ma C, Moses K (1995) Wingless and patched are negative regulators of the morphogenetic furrow and can affect tissue polarity in the developing Drosophila compound eye. Development 121:2279–2289

    Google Scholar 

  • Mardon G, Solomon NM, Rubin GM (1994) Dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120:3473–3486

    Google Scholar 

  • Maurel-Zaffran C, Treisman JE (2000) Pannier acts upstream of wingless to direct dorsal eye disc development in Drosophila. Development 127:1007–1016

    Google Scholar 

  • McNeill H, Yang CH, Brodsky M, Ungos J, Simon MA (1997) Mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal-ventral border in the Drosophila eye. Genes Dev 11:1073–1082

    Google Scholar 

  • Meinertzhagen IA, Hanson TH (1993) The development of the optic lobe. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster, vol. 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 1363–1491

    Google Scholar 

  • Myers PZ, Bastiani MJ (1993) Growth cone dynamics during the migration of an identified commissural growth cone. J Neurosci 13:127–143

    Google Scholar 

  • Nagy LM, Carroll S (1994) Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367:460–463

    Article  CAS  PubMed  Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    CAS  PubMed  Google Scholar 

  • Nulsen C, Nagy LM (1999) The role of wingless in the development of multibranched crustacean limbs. Dev Genes Evol 209:340–348

    Article  CAS  PubMed  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    PubMed  Google Scholar 

  • Oppenheimer DI, MacNicol AM, Patel NH (1999) Functional conservation of the wingless-engrailed interaction as shown by a widely applicable baculovirus misexpression system. Curr Biol 9:1288–1296

    Google Scholar 

  • Orsulic S, Peifer M (1994) A method to stain nuclei of Drosophila for confocal microscopy. Biotechniques 16:441–447

    Google Scholar 

  • Pai CY, Kuo TS, Jaw, TJ, Kurant E, Chen CT, Bessarab DA, Salzberg A, Sun YH (1998) The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, Extradenticle, and suppresses eye development in Drosophila. Genes Dev 12:435–446

    Google Scholar 

  • Panin VM, Papayannopoulos V, Wilson R, Irvine KD (1997) Fringe modulates Notch-ligand interactions. Nature 387:908–912

    Google Scholar 

  • Papayannopoulos V, Tomlinson A, Panin VM, Rauskolb C, Irvine KD (1998) Dorsal-ventral signaling in the Drosophila eye. Science 281:2031–2034

    Google Scholar 

  • Pappu K, Mardon G (2002) Retinal specification and determination in Drosophila. In: Moses K (ed) Drosophila eye development results and problems in cell differentiation 37. Springer-Verlag, Berlin Heidelberg New York, pp 5–19

    Google Scholar 

  • Pichaud F, Casares F (2000) Homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc. Mech Dev 96:15–25

    Google Scholar 

  • Pignoni F, Zipursky SL (1997) Induction of Drosophila eye development by decapentaplegic. Development 124:271–278

    Google Scholar 

  • Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789

    Google Scholar 

  • Ramain P, Heitzler P, Haenlin M, Simpson P (1993) Pannier, a negative regulator of achaete and scute in Drosophila, encodes a zinc finger protein with homology to the vertebrate transcription factor GATA-1. Development 119:1277–1291

    Google Scholar 

  • Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53:217–240

    Google Scholar 

  • Reifegerste R, Moses K (1999) Genetics of epithelial polarity and pattern in the Drosophila retina. BioEssays 21:275–285

    Google Scholar 

  • Richter S, Hartmann B, Reichert H (1998) The wingless gene is required for embryonic brain development in Drosophila. Dev Genes Evol 208:37–45

    Google Scholar 

  • Rieckhof GE, Casares F, Ryoo HD, Abu-Shaar M, Mann RS (1997) Nuclear translocation of extradenticle requires homothorax, which encodes an extradenticle-related homeodomain protein. Cell 91:171–183

    Google Scholar 

  • Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50:649–657

    Google Scholar 

  • Royet J, Finkelstein R (1996) Hedgehog, wingless and orthodenticle specify adult head development in Drosophila. Development 122:1849–1858

    Google Scholar 

  • Royet J, Finkelstein R (1997) Establishing primordia in the Drosophila eye-antennal imaginal disc: the roles of decapentaplegic, wingless and hedgehog. Development 124:4793–4800

    Google Scholar 

  • Saneyoshi T, Kume S, Amasaki Y, Mikoshiba K (2002) The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417:295–299

    Google Scholar 

  • Serikaku MA, O’Tousa JE (1994) Sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 138:1137–1150

    CAS  PubMed  Google Scholar 

  • Singh A, Choi KW (2003) Initial state of the Drosophila eye before dorsoventral specification is equivalent to ventral. Development 130:6351–6360

    Google Scholar 

  • Singh A, Kango-Singh M, Sun YH (2002) Eye suppression, a novel function of teashirt, requires Wingless signaling. Development 129:4271–4280

    Google Scholar 

  • Slusarski DC, Yang-Snyder J, Busa WB, Moon RT (1997) Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev Biol 182:114–120

    Google Scholar 

  • Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668

    Google Scholar 

  • Sucena E, Delon I, Jones I, Payre F, Stern DL (2003) Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 424:935–938

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Tomlinson A (2003) Patterning the peripheral retina of the fly: decoding a gradient. Dev Cell 5:799–809

    Google Scholar 

  • Treisman JE, Rubin GM (1995) Wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development 121:3519–3527

    Google Scholar 

  • van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:789–799

    Google Scholar 

  • Wada S (1974) Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera). Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125

    Google Scholar 

  • Wernet MF, Labhart T, Baumann F, Mazzoni EO, Pichaud F, Desplan C (2003) Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell 115:267–279

    Google Scholar 

  • Wiersdorff V, Lecuit T, Cohen SM, Mlodzik M (1996) Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 122:2153–2162

    Google Scholar 

  • Wilson M, Garrard P, McGinness S (1978) The unit structure of the locust compound eye. Cell Tissue Res 195:205–226

    Google Scholar 

  • Yang CH, Simon MA, McNeill H (1999) Mirror controls planar polarity and equator formation through repression of fringe expression and through control of cell affinities. Development 126:5857–5866

    Google Scholar 

  • Younossi-Hartenstein Tepass U, Hartenstein V (1993) Embryonic origin of the imaginal discs of the head of Drosophila melanogaster. Roux’s Arch Dev Biol 203:60–73

    Google Scholar 

Download references

Acknowledgements

We are indebted to Peter Dearden, Michael Akam and Robin White for providing probes and antibodies. This research was supported by NSF grants DBI-0070099 and DBI-0091926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Friedrich.

Additional information

Edited by C. Desplan

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Friedrich, M. Comparative analysis of Wingless patterning in the embryonic grasshopper eye. Dev Genes Evol 215, 177–197 (2005). https://doi.org/10.1007/s00427-004-0465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0465-6

Keywords

Navigation