Skip to main content

Advertisement

Log in

Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Basic-helix-loop-helix-PAS transcription factors play important roles in diverse biological processes including cellular differentiation and specification, oxygen tension regulation and dioxin metabolism. Drosophila tango is orthologous to mammalian Arnt and acts as a common dimerization partner for bHLH-PAS proteins during embryogenesis. A transient transfection assay using Drosophila S2 tissue culture cells and wild-type and mutant Drosophila tango cDNAs was used to localize the activation domain of the Tango protein. An activation domain was identified in the C-terminus of TGO consisting of poly-glutamine and histidine-proline repeats. Transcriptional activation of the fibroblast growth factor receptor (breathless) gene required an intact TGO C-terminus, in vitro. Co-expression assays of trachealess and tgo in the developing eye imaginal disc showed a requirement for the C-terminal transactivation domain of TGO for a cellular response. Genetic analysis of tgo3 shows that the paired repeat is necessary for tracheal tubule formation in all branches. Lastly, expression of a C-terminal truncated tgo transgene specifically in the CNS midline and trachea resulted in reductions in the number of breathless-expressing cells. These results together identify TGO’s transactivation domain and establish its importance for proper target gene regulation and cellular specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonsson C, Arulampalam V, Whitelaw ML, Pettersson S, Poellinger L (1995) Constitutive function of the basic helix-loop-helix/PAS factor ARNT. Regulation of target promoters via the E-box motif. J Biol Chem 270:13968–13972

    Article  Google Scholar 

  • Bacon NCM, Wappner P, O’Rourke JF, Bartlett SM, Shilo B, Pugh CW, Ratcliffe PJ (1998) Regulation of the Drosophila bHLH-PAS protein SIMA by hypoxia: functional evidence for homology with mammalian HIF-1 alpha. Biochem Biophys Res Comm 249:811–816

    Article  Google Scholar 

  • Boube M, Llimargas M, Casanova J (1999) Cross-regulatory interactions among tracheal genes support a co-operative model for the induction of tracheal fates in the Drosophila embryo. Mech Dev 91:271–278

    Article  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Brand AH, Manoukian AS, Perrimon N (1994) Ectopic expression in Drosophila. Methods Cell Biol 44: 635–654

    Google Scholar 

  • Brunnberg S, Pettersson K, Rydin E, Matthews J, Hanberg A, Pongratz I (2003) The basic helix-loop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription. Proc Natl Acad Sci USA 100:6517–6522

    Article  Google Scholar 

  • Cai J, Lan Y, Appel LF, Weir M (1994) Dissection of the Drosophila Paired protein: functional requirements for conserved motifs. Mech Dev 47:139–150

    Article  Google Scholar 

  • Campos-Ortega AJ, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Crews ST (1998) Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev 12:607–620

    Google Scholar 

  • Crews ST, Fan CM (1999) Remembrance of things PAS: regulation of development by bHLH-PAS proteins. Curr Opin Genet Dev 9:580–587

    Google Scholar 

  • Crews ST, Thomas JB, Goodman CS (1988) The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell 52:143–151

    Google Scholar 

  • Eguchi H, Ikuta T, Tachibana T, Yoneda Y, Kawajiri K (1997) A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor 1beta is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. J Biol Chem 272:17640–17647

    Article  Google Scholar 

  • Ema M, Morita M, Ikawa S, Tanaka M, Matsuda Y, Gotoh O, Saijoh Y, Fujii H, Hamada H, Kikuchi Y, Fujii-Kuriyama Y (1996) Two new members of the murine Sim gene family are transcriptional repressors and show different expression patterns during mouse embryogenesis. Mol Cell Biol 16:5865–5875

    Google Scholar 

  • Emmons RB, Duncan D, Estes PA, Kiefel P, Mosher JT, Sonnenfeld M, Ward MP, Duncan I, Crews ST (1999) The Spineless-Aristapedia and Tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development 126:3937–3945

    Google Scholar 

  • Franks RG, Crews ST (1994) Transcriptional activation domains of the Single-minded bHLH protein are required for CNS midline development. Mech Dev 45:269–277

    Article  Google Scholar 

  • Frigerio G, Burri M, Bopp D, Baumgartner S, Noll M (1986) Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell 47:735–746

    Article  Google Scholar 

  • Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    Article  Google Scholar 

  • Hahn ME (1998) The aryl hydrocarbon receptor: a comparative perspective. Comp Biochem Physiol Part C 121:23–53

    Google Scholar 

  • Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120:2121–2129

    CAS  PubMed  Google Scholar 

  • Hoffman EC, Reyes H, Chu F, Sander LH, Conley LH,Brooks BA, Hankinson O (1991) Cloning of a subunit of theDNA-binding form of the Ah (dioxin) receptor. Science 252:954–958

    Google Scholar 

  • Huang X, Powell-Coffman JA, Jin Y (2004) The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development 131:819–828

    Article  Google Scholar 

  • Isaac DD, Andrew DJ (1996) Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev 10:103–117

    Google Scholar 

  • Jain S, Dolwick KM, Schmidt JV, Bradfield CA (1994) Potent transactivation domains of the Ah receptor and the Ah receptor nuclear translocator map to their carboxyl termini. J Biol Chem 269:31518–31524

    Google Scholar 

  • Jin J, Anthopoulos N, Wetsch B, Binari RC, Isaac DD, Andrew DJ, Woodget JR, Manoukian A (2001) Regulation of Drosophila tracheal system development by protein kinase B. Dev Cell 817–827

  • Klämbt C, Goodman CS (1991) Role of the midline glia and neurons in the formation of the axon commissures in the central nervous system of the Drosophila embyro. Ann NY Acad Sci 633:142–159

    Google Scholar 

  • Klämbt C, Jacobs JR, Goodman CS (1991) The midline of the Drosophila central nervous system: a model for the genetic analysis of cell fate, cell migration and growth cone guidance. Cell 64:801–815

    PubMed  Google Scholar 

  • Klämbt C, Glazer L, Shilo BZ (1992) breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev 6:1668–1678

    Google Scholar 

  • Kobayashi A, Numayama-Tsurata K, Sogawa Kl, Fujii-Kuriyama Y (1997) CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt). J Biochem 122:703–710

    Google Scholar 

  • Latchman DS (1996) Inhibitory transcription factors. Int J Biochem Cell Biol 28:965–974

    Article  Google Scholar 

  • Li H, Dong L, Whitlock JP (1994) Transcriptional activation function of the mouse Ah receptor nuclear translocator. J Biol Chem 269:28098–28105

    Google Scholar 

  • Ma Q, Whitlock JJP (1997) A novel cytoplasmic protein that interacts with the AH receptor, contains tetratricopepetide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Chem 272:8878–8884

    Article  Google Scholar 

  • Ma Y, Certel K, Gao Y, Niemitz E, Mosher J, Mukherjee A, Mutsuddi M, Huseinovic N, Crews ST, Johnson WA, Nambu JR (1999) Functional interactions between Drosophila bHLH/PAS, Sox, and POU transcription factors regulate CNS midline expression of the slit gene. J Neurosci 20:4596–4605

    Google Scholar 

  • Mitchell PJ, Tjian R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378

    Google Scholar 

  • Moffett P, Reece M, Pelletier J (1997) The murine Sim-2 gene product inhibits transcription by active repression and functional interference. Mol Cell Biol 17:4933–4947

    Google Scholar 

  • Necela B, Pollenz RS (2001) Identification of a novel C-terminal domaininvolved in the negative function of the rainbow trout Ah receptor nucleartranslocator protein isoform a (rtARNTa) in Ahreceptor-mediated signaling.Biochem Pharmacol 62(3):307–318

    Google Scholar 

  • Ohshiro T, Saigo K (1997) Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea. Development 124:3975–3986

    Google Scholar 

  • Patel NH (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. In: Fyrberg E, Goldstein LSG (eds) Drosophila melanogaster: practical uses in cell and molecular biology. Academic, San Diego, pp 446–488

    Google Scholar 

  • Reichman-Fried M, Shilo BZ (1995) Breathless, a Drosophila FGF receptor homolog, is required for the onset of tracheal cell migration and tracheole formation. Mech Dev 52:265–273

    Article  Google Scholar 

  • Robinow S, White K (1988) The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Dev Biol 126:294–303

    CAS  PubMed  Google Scholar 

  • Sadek CM, Lalaguier S, Feeney EP, Aitola M, Damdimopoulos AE, Pelto- Huikko M, Gustafsson J-A (2000) Isolation and characterization of AINT: a novel ARNT interacting protein expressed during murine embryonic development. Mech Dev 97:13–26

    Article  Google Scholar 

  • Samakovlis C, Hacohen N, Manning G, Sutherland DX, Guillemin K, Krasnow MA (1996) Development of Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122:1395–1407

    Google Scholar 

  • Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365

    Google Scholar 

  • Shiga Y, Tanaka-Matakatsu M, Hayashi SA (1996) Nuclear GFP/β-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev Growth Differ 38:99–106

    Article  Google Scholar 

  • Sogawa K, Nakano R, Kobayashi A, Kikuchi Y, Ohe N, Matsushita N, Fujii-Kuriyama Y (1995) Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation. Proc Natl Acad Sci USA 92:1936–1940

    Google Scholar 

  • Sonnenfeld M, Ward M, Nystrom G, Mosher J, Stahl S, Crews S (1997) The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124:4583–4594

    Google Scholar 

  • Thomas JB, Crews ST, Goodman CS (1988) Molecular genetics of the single-minded locus: a gene involved in the development of the Drosophila nervous system. Cell 52:133–141

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Ward MP, Mosher JT, Crews ST (1998) Regulation of Drosophila bHLH-PAS protein cellular localization during embryogenesis. Development 125:1599–1608

    Google Scholar 

  • Wharton KA, Crews ST (1993) CNS midline enhancers of the Drosophila slit and Toll genes. Mech Dev 40:141–154

    Article  Google Scholar 

  • Wharton KA Jr, Franks RG, Kasai Y, Crews ST (1994) Control of CNS midline transcription by asymmetric E-box elements: similarity to xenobiotic responsive regulation. Development 120:3563–3569

    Google Scholar 

  • Whitelaw ML, Gustafsson JA, Poellinger L (1994) Identification of transactivation and repression functions of the dioxin receptor and its basic helix-loop-helix/PAS partner factor Arnt: inducible versus constitutive modes of regulation. Mol Cell Biol 14:8343–8355

    Google Scholar 

  • Wigler M, Pellicer A, Silverstein A, Axel R, Urlaub G, Chasin L (1979) Introduction and expression of a rabbit beta-globin gene in mouse fibroblasts. Proc Natl Acad Sci USA 76:1373–1376

    Google Scholar 

  • Wilk R, Weizman I, Glazer L, Shilo B-Z (1996) trachealess encodes a bHLH-PAS protein and is a master regulator gene in the Drosophila tracheal system. Genes Dev 10:93–102

    Google Scholar 

  • Yamaguchi Y, Kuo MT (1995) Functional analysis of aryl hydrocarbon receptor nuclear translocator interactions with aryl hydrocarbon receptor in the yeast two-hybrid system. Biochem Pharmacol 50:1295–1302

    Google Scholar 

  • Zelzer E, Shilo BZ (2000) Interaction between the bHLH-PAS protein Trachealess and the POU-domain protein Drifter, specifies tracheal cell fates. Mech Dev 91:163–173

    Article  Google Scholar 

  • Zelzer E, Wappner P, Shilo B-Z (1997) The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins. Genes Dev 11:2079–2089

    Google Scholar 

Download references

Acknowledgements

We thank Diana van de Hoef, Gabrielle Boulianne and Doug Holmyard for SEM of tgo and trh in the eye. We thank Yalda Sedaghat for help with transcription assays and western analysis. We thank Steve Crews and Mary Ward for the P[UAS tgo] transgenes, anti-SIM, anti-TRH and anti-TGO. This study was supported by a Natural Sciences and Engineering Research Council grant to M.J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret J. Sonnenfeld.

Additional information

Communicated by C. Desplan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnenfeld, M.J., Delvecchio, C. & Sun, X. Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor. Dev Genes Evol 215, 221–229 (2005). https://doi.org/10.1007/s00427-004-0462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0462-9

Keywords

Navigation