Skip to main content
Log in

Polycomb-group proteins are involved in silencing processes caused by a transgenic element from the murine imprinted H19/Igf2 region in Drosophila

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

A subset of autosomal genes undergo genomic imprinting which results in expression from only the paternal or maternal chromosome. While this phenomenon is restricted to mammals and angiosperms, the underlying silencing mechanisms appear to be evolutionarily conserved. A biallelically unmethylated DNaseI hypersensitive region (A6-A4) between the imprinted Igf2 and H19 genes is conserved in humans and mice and functions as a tissue-specific maintenance element for the imprinted growth factor IGF2. In order to analyse A6-A4 for potentially conserved transcriptional maintenance properties, we have generated transgenic Drosophila harbouring the element in a reporter construct. These flies depicted silencing of the reporter genes lacZ and mini-white. The silenced state of the mini-white gene showed variegation and sensitivity to temperature changes. In addition, two members of the conserved Polycomb group, Enhancer of zeste and Posterior sex combs, were needed for repression. Polycomb group proteins are essential for gene silencing during development. Our results indicate that Polycomb group proteins may also be involved in the regulation of mammalian imprinted genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–D.
Fig. 3A–C.
Fig. 4A–C.
Fig. 5A–F.

Similar content being viewed by others

References

  • Ainscough JF, Koide T, Tada M, Barton S, Surani MA (1997) Imprinting of Igf2 and H19 from a 130 kb YAC transgene. Development 124:3621–3632

    CAS  PubMed  Google Scholar 

  • Ainscough JF, John RM, Barton SC, Surani MA (2000) A skeletal muscle-specific mouse Igf2 repressor lies 40 kb downstream of the gene. Development 127:3923–3930

    CAS  PubMed  Google Scholar 

  • Akasaka T, van Lohuizen M, van der Lugt N, Mizutani-Koseki Y, Kanno M, Taniguchi M, Vidal M, Alkema M, Berns A, Koseki H (2001) Mice doubly deficient for the Polycomb Group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development 128:1587–1597

    CAS  PubMed  Google Scholar 

  • Arney KL, Erhardt S, Drewell RA, Surani MA (2001) Epigenetic reprogramming of the genome - -from the germ line to the embryo and back again. Int J Dev Biol 45:533–540

    CAS  PubMed  Google Scholar 

  • Bajusz I, Sipos L, Gyorgypal Z, Carrington EA, Jones RS, Gausz J, Gyurkovics H (2001) The Trithorax-mimic allele of Enhancer of zeste renders active domains of target genes accessible to polycomb-group-dependent silencing in Drosophila melanogaster. Genetics 159:1135–1150

    CAS  PubMed  Google Scholar 

  • Bartolomei MS, Tilghman SM (1997) Genomic imprinting in mammals. AnnuRevGenet 1997:493–525

    Google Scholar 

  • Beuchle D, Struhl G, Muller J (2001) Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128:993–1004

    CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones R.S, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-Group silencing. Science 298 (5595) :1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Carrington EA, Jones RS (1996) The Drosophila Enhancer of zeste gene encodes a chromosomal protein: examination of wild-type and mutant protein distribution. Development 122:4073–4083

    CAS  PubMed  Google Scholar 

  • Cavalli G, Paro R (1998) The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93:505–518

    CAS  PubMed  Google Scholar 

  • Chan CS, Rastelli L, Pirrotta V (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13:2553–2564

    CAS  PubMed  Google Scholar 

  • Chiang A, O'Connor MB, Paro R, Simon J, Bender W (1995) Discrete Polycomb-binding sites in each parasegmental domain of the bithorax complex. Development 121:1681–1689

    CAS  PubMed  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirotta V (2002) Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111 (2):185–196

    CAS  PubMed  Google Scholar 

  • Drewell RA, Brenton JD, Ainscough JF, Barton SC, Hilton KJ, Arney KL, Dandolo L, Surani MA (2000) Deletion of a silencer element disrupts H19 imprinting independently of a DNA methylation epigenetic switch. Development 127:3419–3428

    PubMed  Google Scholar 

  • Fauvarque MO, Dura JM (1993) Polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev 7:1508–1520

    CAS  PubMed  Google Scholar 

  • Fauvarque MO, Zuber V, Dura JM (1995) Regulation of polyhomeotic transcription may involve local changes in chromatin activity in Drosophila. Mech Dev 52:343–355

    CAS  PubMed  Google Scholar 

  • Francis NJ, Kingston RE (2001) Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2:409–421

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S (1996) Dosage-dependent modification of position-effect variegation in Drosophila. Bioessays 18:401–409

    CAS  PubMed  Google Scholar 

  • Hobert O, Sures I, Ciossek T, Fuchs M, Ullrich A (1996) Isolation and developmental expression analysis of Enx-1 a novel mouse Polycomb group gene. Mech Dev 55:171–184

    Article  CAS  PubMed  Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Laible G, Dorn R, Reuter G (1998) SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci 54:80–93

    CAS  PubMed  Google Scholar 

  • Jones BK, Levorse J, Tilghman SM (2001) Deletion of a nuclease-sensitive region between the Igf2 and H19 genes leads to Igf2 misregulation and increased adiposity. Hum Mol Genet 10:807–814

    Article  CAS  PubMed  Google Scholar 

  • Jones CA, Ng J, Peterson AJ, Morgan K, Simon J, Jones RS (1998) The Drosophila esc and E (z) proteins are direct partners in polycomb group-mediated repression. Mol Cell Biol 18:2825–2834

    CAS  PubMed  Google Scholar 

  • Koide T, Ainscough J, Wijgerde M, Surani MA (1994) Comparative analysis of Igf2/H19 imprinted domain: Identification of a highly conserved intergenic DNase I hypersensitive region. Genomics 24:1–8

    Article  CAS  PubMed  Google Scholar 

  • Laible G, Wolf A, Dorn R, Reuter G, Nislow C, Lebersorger A, Popkin D, Pillus L, Jenuwein T (1997) Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at Scerevisiae telomeres. EMBO J 16:3219–3232

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse D, Shearn A (1996) E (z): a polycomb group gene or a trithorax group gene? Development 122:2189–2197

    Google Scholar 

  • Lyko F, Paro R (1999) Chromosomal elements conferring epigenetic inheritance. BioEssays 21:824–832

    Article  CAS  PubMed  Google Scholar 

  • Lyko F, Brenton JD, Surani MA, Paro R (1997) An imprinting element from the mouse H19 locus functions as a silencer in Drosophila. Nat Genet 16:171–174

    CAS  PubMed  Google Scholar 

  • Lyko F, Buiting K, Horsthemke B, Paro R (1998) Identification of a silencing element in the human 15q11-q13 imprinting center by using transgenic Drosophila. Proc Natl Acad Sci USA 95:1698–1702

    CAS  PubMed  Google Scholar 

  • Mak W, Baxter J, Silva J, Newall AE, Otte AP, Brockdorff N (2002) Mitotically stable association of polycomb group proteins eed and enx1 with the inactive X chromosome in trophoblast stem cells. Curr Biol 12:1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Martin EC, Adler PN (1993) The polycomb group gene posterior sex combs encodes a chromosomal protein. Development 117:641–655

    CAS  PubMed  Google Scholar 

  • Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O'Connor MB, Kongston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111 (2):197–208

    PubMed  Google Scholar 

  • Paro R, Harte PJ (1996) The role of Polycomb group and trithorax group chromatin complexes in the maintenance of determined cell states. Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York, pp 507–528

  • Poux S, Melfi R, Pirrotta V (2001) Establishment of Polycomb silencing requires a transient interaction between PC and ESC. Genes Dev 15:2509–2514

    Article  CAS  PubMed  Google Scholar 

  • Raaphorst FM, van Kemenade FJ, Blokzijl T, Fieret E, Hamer KM, Satijn DP, Otte AP, Meijer CJ (2000) Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease. Am J Pathol 157:709–715

    CAS  PubMed  Google Scholar 

  • Raaphorst FM, Otte AP, van Kemenade FJ, Blokzijl T, Fieret E, Hamer KM, Satijn DP, Meijer CJ (2001) Distinct BMI-1 and EZH2 expression patterns in thymocytes and mature T cells suggest a role for Polycomb genes in human T cell differentiation. J Immunol 166:5925–5934

    CAS  PubMed  Google Scholar 

  • Reuter G, Wolff I (1981) Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Mol Gen Genet 182:516–519

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sewalt RG, van der Vlag J, Gunster MJ, Hamer KM, den Blaauwen JL, Satijn DP, Hendrix T, van Driel R, Otte AP (1998) Characterization of interactions between the mammalian polycomb-group proteins ENX1/EZH2 and EED suggests the existence of different mammalian polycomb-group protein complexes. Mol Cell Biol 18:3586–3595

    CAS  PubMed  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE (1999) Stabilization of chromatin structure by PRC1 a Polycomb complex. Cell 98:37–46

    CAS  PubMed  Google Scholar 

  • Spradling AL, Rubin GM (1982) Transformation of cloned P elements into Drosophila germ line chromosomes. Science 218:341–347

    CAS  PubMed  Google Scholar 

  • Strutt H, Cavalli G, Paro R (1997) Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J 16:3621–3632

    CAS  PubMed  Google Scholar 

  • Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93:309–312

    CAS  PubMed  Google Scholar 

  • Tie F, Furuyama T, Prasad-Sinha J, Jane E, Harte PJ (2001) The Drosophila Polycomb Group proteins ESC and E (Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development 128:275–286

    CAS  PubMed  Google Scholar 

  • van der Vlag J, Otte AP (1999) Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 23:474–478

    Article  PubMed  Google Scholar 

  • van Lohuizen M (1999) The trithorax-group and Polycomb-group chromatin modifiers: implications for disease. Curr Opin Genet Dev 9:355–361

    Article  PubMed  Google Scholar 

  • van Lohuizen M, Tijms M, Voncken JW, Schumacher A, Magnuson T, Wientjens E (1998) Interaction of mouse polycomb-group (Pc-G) proteins ENX1 and ENX2 with EED: indication for separate Pc-G complexes. Mol Cell Biol 18:3572–3579

    PubMed  Google Scholar 

  • Wang J, Mager J, Chen Y, Schneider E, Cross JC, Nagy A, Magnuson T (2001) Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat Genet 28:371–375

    Article  CAS  PubMed  Google Scholar 

  • Wu CT, Howe M (1995) A genetic analysis of the Suppressor 2 of zeste complex of Drosophila melanogaster. Genetics 140:139–181

    CAS  PubMed  Google Scholar 

  • Zink D, Paro R (1995) Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. EMBO J 14:5660–5671

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Gunter Reuter and Ting Wu for fly strains and Kat Arney and Patrick Western for critical comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft and by the Fond der Chemischen Industrie to R.P. The work of M.A.S and J.F.X.A. was supported by a Grant from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Paro.

Additional information

Edited by M. Akam

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erhardt, S., Lyko, F., Ainscough, J.FX. et al. Polycomb-group proteins are involved in silencing processes caused by a transgenic element from the murine imprinted H19/Igf2 region in Drosophila . Dev Genes Evol 213, 336–344 (2003). https://doi.org/10.1007/s00427-003-0331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-003-0331-y

Keywords

Navigation