Skip to main content
Log in

Does musical interaction in a jazz duet modulate peripersonal space?

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Researchers have widely studied peripersonal space (the space within reach) in the last 20 years with a focus on its plasticity following the use of tools and, more recently, social interactions. Ensemble music is a sophisticated joint action that is typically explored in its temporal rather than spatial dimensions, even within embodied approaches. We, therefore, devised a new paradigm in which two musicians could perform a jazz standard either in a cooperative (correct harmony) or uncooperative (incorrect harmony) condition, under the hypothesis that their peripersonal spaces are modulated by the interaction. We exploited a well-established audio-tactile integration task as a proxy for such a space. After the performances, we measured reaction times to tactile stimuli on the subjects’ right hand and auditory stimuli delivered at two different distances, (next to the subject and next to the partner). Considering previous literature’s evidence that integration of two different stimuli (e.g. a tactile and an auditory stimulus) is faster in near space compared to far space, we predicted that a cooperative interaction would have extended the peripersonal space of the musicians towards their partner, facilitating reaction times to bimodal stimuli in both spaces. Surprisingly, we obtained complementary results in terms of an increase of reaction times to tactile-auditory near stimuli, but only following the uncooperative condition. We interpret this finding as a suppression of the subject’s peripersonal space or as a withdrawal from the uncooperative partner. Subjective reports and correlations between these reports and reaction times comply with that interpretation. Finally, we determined an overall better multisensory integration competence in musicians compared to non-musicians tested in the same task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  • Badino, L., D’Ausilio, A., Glowinsky, D., Camurri, A., & Fadiga, L. (2014). Sensorimotor communication in professional quartets. Neuropsychologia, 55, 98–104.

    Article  PubMed  Google Scholar 

  • Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30, 917–926.

    Article  PubMed  Google Scholar 

  • Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience and Biobehavioral Reviews, 51C, 108–117. https://doi.org/10.1016/j.neubiorev.2015.01.004.

    Article  Google Scholar 

  • Berti, A., & Frassinetti, F. (2000). When far becomes near: Remapping of space by tool use. Journal of Cognitive Neuroscience, 12, 415–420.

    Article  PubMed  Google Scholar 

  • Biggio, M., Bisio, A., Avanzino, L., Ruggeri, P., & Bove, M. (2017). This racket is not mine: The influence of the tool-use on peripersonal space. Neuropsychologia, 103, 54–58.

    Article  PubMed  Google Scholar 

  • Bisio, A., Garbarini, F., Biggio, M., Fossataro, C., Ruggeri, P., & Bove, M. (2017). Dynamic shaping of the defensive peripersonal space through predictive motor mechanisms: when the ‘near’ becomes ‘far’. Journal of Neuroscience, 37, 2415–2424.

    Article  PubMed  Google Scholar 

  • Brown, L. E., & Goodale, M. A. (2013). A brief review of the role of training in near-tool effects. Frontiers in Psychology, 4, 576. https://doi.org/10.3389/fpsyg.2013.00576.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruno, V., Carpinella, I., Rabuffetti, M., De Giuli, L., Sinigaglia, C., Garbarini, F., & Ferrarin, M. (2019). How tool-use shapes body metric representation: Evidence from motor training with and without robotic assistance. Frontiers in Human Neuroscience, 13, 299. https://doi.org/10.3389/fnhum.2019.00299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bufacchi, R. J., & Iannetti, G. D. (2018). An action field theory of peripersonal space. Trends in Cognitive Sciences, 22, 1076–1090. https://doi.org/10.1016/j.tics.2018.09.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Canzoneri, E., Magosso, E., & Serino, A. (2012). Dynamic sounds capture the boundaries of peripersonal space representation in humans. PLoS ONE, 7, e44306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheong Y.J. & Will U. (2018). Music, Space and Body: the evolutionary history of vocal and instrumental music. Conference: ICMPC15-ESCOM10

  • Clark, A. (2008). Supersizing the Mind. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Clayton, M. (2012). What is entrainment? Definition and applications in musical research. Empirical Musicology Review, 7(1–2), 49–56.

    Article  Google Scholar 

  • Cochrane, T. (2017). Group Flow. In M. Lesaffre, P.-J. Maes, & M. Leman (Eds.), The Routledge Companion to Embodied Music Interaction (pp. 133–140). NY: Routledge.

    Chapter  Google Scholar 

  • Cross, I. (2014). Music and communication in music psychology. Psychology of Music, 42(6), 809–819.

    Article  Google Scholar 

  • Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper & Row.

    Google Scholar 

  • D’Ausilio, A., Badino, L., Li, Y., Tokay, S., Craighero, L., Canto, R., et al. (2012). Leadership in orchestra emerges from the causal relationships of movement kinematics. PLoS ONE, 7, e35757.

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Ausilio, A., Novembre, G., Fadiga, L., & Keller, P. E. (2015). What can music tell us about social interaction? Trends in Cognitive Sciences, 19(3), 111–114.

    Article  PubMed  Google Scholar 

  • Davis, M. H. (1980). A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85.

    Google Scholar 

  • Dijkerman, H. C., & Farnè, A. (2015). Sensorimotor and social aspects of peripersonal space. Neuropsychologia, 70, 309–312.

    Article  PubMed  Google Scholar 

  • Dissanayake, E. (2000). Antecedents of the temporal arts in early mother–infant interaction. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The Origins of Music (pp. 389–410). Cambridge: MIT Press.

    Google Scholar 

  • Doffman, M.R. (2008). Feeling the Groove: Shared Time and Its Meanings for Three Jazz Trios. Ph.D. Dissertation, Music Department, Open University.

  • Eerola, T., Jakubowski, K., Moran, N., Keller, P., & Clayton, M. (2018). Shared periodic performer movements coordinate interactions in duo improvisations. Royal Society Open Science, 5(2), 171520.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.

    Article  PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  Google Scholar 

  • Freeman, W. J. (2000). A neurobiological role of music in social bonding. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The Origins of Music (pp. 411–424). Cambridge: The MIT Press.

    Google Scholar 

  • Fuchs, T., & De Jaegher, H. (2009). Enactive Intersubjectivity: Participatory sense-making and mutual incorporation. Phenomenology and the Cognitive Sciences, 8(4), 465–486.

    Article  Google Scholar 

  • Geeves, A., & Sutton, J. (2014). Embodied cognition, perception, and performance in music. Empirical Musicology Review, 9(3–4), 247–253.

    Google Scholar 

  • Gescheider, G. A. (1997). The classical psychophysical methods. Psychophysics: The Fundamentals (3rd ed., pp. 45–72). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Goebl, W., & Palmer, C. (2009). Synchronization of timing and motion among performing musicians. Music Perception, 26, 427–438.

    Article  Google Scholar 

  • Graziano, M. S. A., Hu, X. T., & Gross, C. G. (1997). Visuospatial properties of ventral premotor cortex. Journal of Neurophysiology, 77, 2268–2292.

    Article  PubMed  Google Scholar 

  • Hart, E., & Di Blasi, Z. (2014). Combined flow in musical jam sessions: A pilot qualitative study. Psychology of Music, 43(2), 1–16. https://doi.org/10.1177/0305735613502374.

    Article  Google Scholar 

  • Herbert, R. (2011). Everyday Music Listening: Absorption, Dissociation and Trancing. Farnham: Ashgate.

    Google Scholar 

  • Hove, M. J., & Risen, J. L. (2009). It's all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27, 949–960.

    Article  Google Scholar 

  • Hunley, S. B., & Lourenco, S. F. (2018). What is peripersonal space? An examination of unresolved empirical issues and emerging findings. Wiley Interdisciplinary Review Cognitive Science, 9, 1–17. https://doi.org/10.1002/wcs.1472.

    Article  Google Scholar 

  • Iachini, T., Coello, Y., Frassinetti, F., & Ruggiero, G. (2014). Body space in social interactions: A comparison of reaching and comfort distance in immersive virtual reality. PLoS ONE, 9, e111511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iriki, A., Tanaka, M., & Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport, 7, 2325–2330.

    Article  PubMed  Google Scholar 

  • Iyer, V. (2002). Embodied mind, situated cognition, and expressive microtiming in African–American music. Music Perception, 19, 387–414.

    Article  Google Scholar 

  • Jäncke, L. (2012). The dynamic audio-motor system in pianists. Annals of the New York Academy of Sciences, 1252, 246–252.

    Article  PubMed  Google Scholar 

  • Keller, P. E., Knoblich, G., & Repp, B. H. (2007). Pianists duet better when they play with themselves: On the possible role of action simulation in synchronization. Consciousness and Cognition, 16, 102–111.

    Article  PubMed  Google Scholar 

  • Keller, P. E., Novembre, G., & Hove, M. J. (2014). Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination. Philosophical Transactions of the Royal Society B, 369, 20130394.

    Article  Google Scholar 

  • Kirschner, S., & Tomasello, M. (2009). Joint drumming: Social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299–314.

    Article  PubMed  Google Scholar 

  • Koelsch, S., Fritz, T., & Schlaug, G. (2008). Amygdala activity can be modulated by unexpected chord functions during music listening. NeuroReport, 19(18), 1815–1819.

    Article  PubMed  Google Scholar 

  • Kokal, I., Engel, A., Kirschner, S., & Keysers, C. (2011). Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment—If the rhythm comes easily. PLoS ONE, 6(11), e27272. https://doi.org/10.1371/journal.pone.0027272.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger, J. (2014). Affordances and the musically extended mind. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2013.01003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landry, S. P., & Champoux, F. (2017). Musicians react faster and are better multisensory integrators. Brain and Cognition, 111, 156–162.

    Article  PubMed  Google Scholar 

  • Lee, D. J., Chen, Y., & Schlaug, G. (2003). Corpus callosum: Musician and gender effects. NeuroReport, 14, 205–209.

    Article  PubMed  Google Scholar 

  • Leman, M. (2007). Embodied music cognition and mediation technology. Cambridge: MIT Press.

    Book  Google Scholar 

  • Leman, M. (2012). Musical entrainment subsumes bodily gestures—Its definition needs a spatiotemporal dimension. Empirical Musicology Review, 7, 63–67.

    Article  Google Scholar 

  • Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS ONE, 3, e1679. https://doi.org/10.1371/journal.pone.0001679.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindenberger, U., Li, S. C., Gruber, W., & Müller, V. (2009). Brains swinging in concert: Cortical phase synchronization while playing guitar. BMC Neuroscience, 10, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loehr, J. D., Kourtis, D., Vesper, C., Sebanz, N., & Günther, K. (2013). Monitoring individual and joint action outcomes in duet music performance. Journal of cognitive neuroscience, 25(7), 1049–1061.

    Article  PubMed  Google Scholar 

  • Loehr, J. D., & Palmer, C. (2011). Temporal coordination between performing musicians. Quarterly Journal of Experimental Psychology, 64(11), 2153–2167.

    Article  Google Scholar 

  • Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8, 79–86. https://doi.org/10.1016/j.tics.2003.12.008.

    Article  PubMed  Google Scholar 

  • Müller, V., Delius, J. A. M., & Lindenberger, U. (2018). Complex networks emerging during choir singing. Annals of the New York Academy of Sciences, 1431(1), 85–101.

    Article  PubMed  Google Scholar 

  • Munte, T., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3, 473–478.

    Article  PubMed  Google Scholar 

  • Naveda, L., & Leman, M. (2010). The spatiotemporal representation of dance and music gestures using topological gesture analysis (TGA). Music Perception, 28(1), 93–111.

    Article  Google Scholar 

  • Nijs, L. (2017). The merging of musician and musical instrument: an internal model-based approach. In M. Lesaffre, M. Leman, & P. J. Maes (Eds.), Routledge Companion to Embodied Musical Interaction. London: Routledge.

    Google Scholar 

  • Patané, I., Iachini, T., Farnè, A., & Frassinetti, F. (2016). Disentangling action from social space: Tool-use differently shapes the space around us. PLoS ONE, 11(5), e0154247. https://doi.org/10.1371/journal.pone.0154247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellencin, E., Paladino, M. P., Herbelin, B., & Serino, A. (2018). Social perception of others shapes one's own multisensory peripersonal space. Cortex, 104, 163–179.

    Article  PubMed  Google Scholar 

  • Phillips-Silver, J., & Keller, P. E. (2012). Searching for roots of entrainment and joint action in early musical interactions. Frontiers in Human Neuroscience, 6, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzolatti, G., Scandolara, C., Matelli, M., & Gentilucci, M. (1981). Afferent properties of periarcuate neurons in macaque monkeys II. Visual responses. Behavioural Brain Research, 2(2), 147–163. https://doi.org/10.1016/0166-4328(81)90053-X.

    Article  PubMed  Google Scholar 

  • Salice, A., Høffding, S., & Gallagher, S. (2017). Putting plural self-awareness into practice. The phenomenology of expert musicianship. Topoi. https://doi.org/10.1007/s11245-017-9451-2.

    Article  Google Scholar 

  • Schäfer, T., Fachner, J., & Smukalla, M. (2013). Changes in the representation of space and time while listening to music. Frontiers in Psychology, 4, 508.

    PubMed  PubMed Central  Google Scholar 

  • Schiavio, A., & De Jaegher, H. (2017). Participatory sense-making in Joint musical practice. In M. Lesaffre, P. J. Maes, & M. Leman (Eds.), Routledge Companion to Embodied Music Interaction (pp. 31–39). New York and London: Routledge.

    Chapter  Google Scholar 

  • Serino, A., Bassolino, M., Farnè, A., & Làdavas, E. (2007). Extended multisensory space in blind cane users. Psychological Science, 18(7), 642–648.

    Article  PubMed  Google Scholar 

  • Shrem, T., Murray, M., & Deouell, L. (2017). Auditory-visual integration modulates location-specific repetition suppression of auditory responses. Psychophysiology, 54(11), 1663–1675.

    Article  PubMed  Google Scholar 

  • Soliman, T. M., Ferguson, R., Dexheimer, M. S., & Glenberg, A. M. (2015). Consequences of joint action: Entanglement with your partner. Journal of Experimental Psychology: General, 144(4), 873–888.

    Article  Google Scholar 

  • Spence, C., Pavani, F., & Driver, J. (1998). What crossing the hands can reveal about crossmodal links in spatial attention. Abstracts of the Psychonomic Society, 3, 13.

    Google Scholar 

  • Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience., 18, 1380–1393. https://doi.org/10.1162/jocn.2006.18.8.1380.

    Article  PubMed  Google Scholar 

  • Stupacher, J., Maes, P. J., Witte, M., & Wood, G. (2017). Music strengthens prosocial effects of interpersonal synchronization—If you move in time with the beat. Journal of Experimental Social Psychology, 72, 39–44.

    Article  Google Scholar 

  • Teneggi, C., Canzoneri, E., di Pellegrino, G., & Serino, A. (2013). Social modulation of peripersonal space boundaries. Current Biology, 23(5), 406–411.

    Article  PubMed  Google Scholar 

  • Torrance, S., & Schumann, F. (2018). The spur of the moment: What jazz improvisation tells cognitive science. AI and Society. https://doi.org/10.1007/s00146-018-0838-4.

    Article  Google Scholar 

  • Walton, A., Richardson, M. J., Langland-Hassan, P., & Chemero, A. (2015). Improvisation and the self-organization of multiple musical bodies. Frontiers in Psychology., 6, 313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamm, A., Pfordresher, P. Q., & Palmer, C. (2015). Temporal coordination in joint music performance: Effects of endogenous rhythms and auditory feedback. Experimental Brain Research, 233, 607–615.

    Article  PubMed  Google Scholar 

  • Zimmerman, E., & Lahav, A. (2012). The multisensory brain and its ability to learn music. Annals of the New York Academy of Sciences, 1252, 179–184.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We sincerely thank the musicians who enthusiastically took part in the experiment, Andrea Busso for technical support and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dell’Anna.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and animal right

The manuscript does not contain clinical studies or patient data. This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dell’Anna, A., Rosso, M., Bruno, V. et al. Does musical interaction in a jazz duet modulate peripersonal space?. Psychological Research 85, 2107–2118 (2021). https://doi.org/10.1007/s00426-020-01365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-020-01365-6

Navigation