Skip to main content
Log in

Cueing distraction: electrophysiological evidence for anticipatory active suppression of distractor location

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

It is well known that processing at upcoming target locations can be facilitated, but mixed results have been obtained regarding the inhibition of irrelevant locations when advance information about distractors is available on a trial-to-trial basis. Here, we provide electrophysiological evidence that distractor locations can be anticipatorily suppressed. In an additional singleton search task, distractor cues were presented before the search display, which were either fully predictive or non-predictive of the location of the upcoming salient colour distractor. The PD component of the event-related potential, a marker of active suppression, was elicited by lateral singletons and smaller following predictive than non-predictive cues, indicating that less suppression was required upon presentation of the distractor when its location was known in advance. Presumably, excitability of regions processing the predictively cued locations was anticipatorily reduced to prevent distraction. This idea was further supported by the finding that larger individual cueing benefits in reaction time were associated with stronger reductions of the PD. There was no behavioural benefit at the group level, however, and implications for the role of individual differences and for the measurement of inhibition in distractor cueing tasks are discussed. The enhancement of target locations, reflected by the NT component, was not modulated by the predictiveness of the cues. Overall, our findings add to a growing literature highlighting the importance of inhibitory mechanisms for the guidance of spatial attention by showing that irrelevant locations can be anticipatorily suppressed in a top-down fashion, reducing the impact of even salient stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on request.

References

  • Barras, C., & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 121, 74–83.

    Article  PubMed  Google Scholar 

  • Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 1484–1525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, S., Cunningham, C. A., & Egeth, H. (2018). The power of negative thinking: Paradoxical but effective ignoring of salient-but-irrelevant stimuli with a spatial cue. Visual Cognition, Advance online publication.

  • Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15–18.

    Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  Google Scholar 

  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.

    Article  PubMed  Google Scholar 

  • Feldmann-Wüstefeld, T., Uengoer, M., & Schubö, A. (2015). You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention. Psychophysiology, 52, 1483–1497.

    Article  PubMed  Google Scholar 

  • Feldmann-Wüstefeld, T., & Vogel, E. K. (2018). Neural evidence for the contribution of active suppression during working memory filtering. Cerebral Cortex.. https://doi.org/10.1093/cercor/bhx336.

    Article  Google Scholar 

  • Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67–95.

    Article  PubMed  Google Scholar 

  • Fortier-Gauthier, U., Moffat, N., Dell’Acqua, R., McDonald, J. J., & Jolicœur, P. (2012). Contralateral cortical organisation of information in visual short-term memory: Evidence from lateralized brain activity during retrieval. Neuropsychologia, 50, 1748–1758.

    Article  PubMed  Google Scholar 

  • Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & McDonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113, 3693–3698.

    Article  Google Scholar 

  • Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34, 5658–5666.

    Article  PubMed  Google Scholar 

  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26, 1740–1750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2016). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79, 45–62.

    Article  Google Scholar 

  • Gaspelin, N., & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30, 1265–1280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspelin, N., & Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22, 79–92.

    Article  PubMed  Google Scholar 

  • Geyer, T., Müller, H., & Krummenacher, J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48, 1315–1326.

    Article  PubMed  Google Scholar 

  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21, 760–775.

    Article  PubMed  Google Scholar 

  • Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39, 1713–1730.

    PubMed  Google Scholar 

  • Luck, S. J. (2012). Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. In E. S. Kappenman & S. J. Luck (Eds.), The Oxford handbook of event-related potential components (pp. 329–360). Oxford: Oxford University Press.

    Google Scholar 

  • Moher, J., Abrams, J., Egeth, H. E., Yantis, S., & Stuphorn, V. (2011). Trial-by-trial adjustments of top-down set modulate oculomotor capture. Psychonomic Bulletin & Review, 18, 897–903.

    Article  Google Scholar 

  • Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74, 1590–1605.

    Article  Google Scholar 

  • Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2009). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology: Human Perception and Performance, 35, 1–16.

    PubMed  Google Scholar 

  • Munneke, J., Fait, E., & Mazza, V. (2013). Attentional processing of multiple targets and distractors. Psychophysiology, 50, 1104–1108.

    Article  PubMed  Google Scholar 

  • Munneke, J., Heslenfeld, D. J., Usrey, W. M., Theeuwes, J., & Mangun, G. R. (2011). Preparatory effects of distractor suppression: Evidence from visual cortex. PLoS ONE, 6, e27700.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munneke, J., Van der Stigchel, S., & Theeuwes, J. (2008). Cueing the location of a distractor: An inhibitory mechanism of spatial attention? Acta Psychologica, 129, 101–107.

    Article  PubMed  Google Scholar 

  • Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.

    Article  PubMed  Google Scholar 

  • Ruff, C. C., & Driver, J. (2006). Attentional preparation for a lateralized visual distractor: Behavioral and fMRI evidence. Journal of Cognitive Neuroscience, 18, 522–538.

    Article  PubMed  Google Scholar 

  • Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32, 10725–10736.

    Article  PubMed  Google Scholar 

  • Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception & Psychophysics, 72, 1455–1470.

    Article  Google Scholar 

  • Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19, 956–972.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, B., & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics, 80, 860–870.

    Article  Google Scholar 

  • Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44, 13–17.

    PubMed  Google Scholar 

  • Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80, 1763–1774.

    Article  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121–138.

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation—project number 222641018—SFB/TRR 135, TP B3) and was conducted while the first author was at Philipps-Universität Marburg. The authors would like to thank Aylin Hanne for assistance with data collection and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Heuer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were approved by the Ethics Committee of the Faculty of Psychology at Philipps-Universität Marburg and in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuer, A., Schubö, A. Cueing distraction: electrophysiological evidence for anticipatory active suppression of distractor location. Psychological Research 84, 2111–2121 (2020). https://doi.org/10.1007/s00426-019-01211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-019-01211-4

Navigation