Skip to main content
Log in

Effects of pitch and tempo of auditory rhythms on spontaneous movement entrainment and stabilisation

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Human movements spontaneously entrain to auditory rhythms, which can help to stabilise movements in time and space. The properties of auditory rhythms supporting the occurrence of this phenomenon, however, remain largely unclear. Here, we investigate in two experiments the effects of pitch and tempo on spontaneous movement entrainment and stabilisation. We examined spontaneous entrainment of hand-held pendulum swinging in time with low-pitched (100 Hz) and high-pitched (1600 Hz) metronomes to test whether low pitch favours movement entrainment and stabilisation. To investigate whether stimulation and movement tempi moderate these effects of pitch, we manipulated (1) participants’ preferred movement tempo by varying pendulum mechanical constraints (Experiment 1) and (2) stimulation tempo, which was either equal to, or slightly slower or faster (± 10%) than the participant’s preferred movement tempo (Experiment 2). The results showed that participants’ movements spontaneously entrained to auditory rhythms, and that this effect was stronger with low-pitched rhythms independently of stimulation and movement tempi. Results also indicated that auditory rhythms can lead to increased movement amplitude and stabilisation of movement tempo and amplitude, particularly when low-pitched. However, stabilisation effects were found to depend on intrinsic movement variability. Auditory rhythms decreased movement variability of individuals with higher intrinsic variability but increased movement variability of individuals with lower intrinsic variability. These findings provide new insights into factors that influence auditory–motor entrainment and how they may be optimised to enhance movement efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bardy, B. G., Hoffmann, C. P., Moens, B., Leman, M., & Dalla Bella, S. (2015). Sound-induced stabilization of breathing and moving. Annals of the New York Academy of Sciences, 1337, 94–100.

    Article  PubMed  Google Scholar 

  • Batschelet, E. (1981). Circular statistics in biology (Vol. 371). London: Academic Press.

    Google Scholar 

  • Boersma, P., & Weenink, D. (2014). Praat: Doing phonetics by computer (Version 5. 3. 79) [Computer program].

  • Boltz, M. G. (2011). Illusory tempo changes due to musical characteristics. Music Perception, 28, 367–386.

    Article  Google Scholar 

  • Bood, R. J., Nijssen, M., Van Der Kamp, J., & Roerdink, M. (2013). The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats. PloS One, 8, e70758.

    Article  PubMed  PubMed Central  Google Scholar 

  • Broze, Y., & Huron, D. (2013). Is higher music faster? Pitch–speed relationships in Western compositions. Music Perception, 31, 19–31.

    Article  Google Scholar 

  • Burger, B., Thompson, M. R., Luck, G., Saarikallio, S., & Toiviainen, P. (2013). Influences of rhythm-and timbre-related musical features on characteristics of music-induced movement. Frontiers in Psychology, 4, 183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burger, B., Thompson, M. R., Luck, G., Saarikallio, S. H., & Toiviainen, P. (2014). Hunting for the beat in the body: on period and phase locking in music-induced movement. Frontiers in Human Neuroscience, 8, 903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coey, C. A., Varlet, M., & Richardson, M. J. (2012). Coordination dynamics in a socially situated nervous system. Frontiers in Human Neuroscience, 6, 164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coey, C. A., Varlet, M., Schmidt, R. C., & Richardson, M. J. (2011). Effects of movement stability and congruency on the emergence of spontaneous interpersonal coordination. Experimental Brain Research, 211, 483–493.

    Article  PubMed  Google Scholar 

  • Collier, W. G., & Hubbard, T. L. (2004). Musical scales and brightness evaluations: effects of pitch, direction, and scale mode. Musicae Scientiae, 8, 151–173.

    Article  Google Scholar 

  • Demos, A. P., Chaffin, R., Begosh, K. T., Daniels, J. R., & Marsh, K. L. (2012). Rocking to the beat: Effects of music and partner’s movements on spontaneous interpersonal coordination. Journal of Experimental Psychology: General, 141, 49–53.

    Article  Google Scholar 

  • Dotov, D. G., Bayard, S., de Cock, V. C., Geny, C., Driss, V., Garrigue, G., Bardy, B., & Bella, D., S (2017). Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson’s disease. Gait and Posture, 51, 64–69.

    Article  PubMed  Google Scholar 

  • Eitan, Z., & Granot, R. Y. (2006). How music moves: Musical parameters and images of motion. Music Perception, 23, 221–247.

    Article  Google Scholar 

  • Fraisse, P. (1982). Rhythm and tempo. In D. Deutsch (Ed.), The psychology of music (pp. 149–180). Orlando: Academic Press.

    Chapter  Google Scholar 

  • Fuchs, A., Jirsa, V. K., Haken, H., & Kelso, J. S. (1996). Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies. Biological Cybernetics, 74, 21–30.

    Article  PubMed  Google Scholar 

  • Fujioka, T., Trainor, L. J., Large, E. W., & Ross, B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. Journal of Neuroscience, 32, 1791–1802.

    Article  PubMed  Google Scholar 

  • Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2005). Automatic encoding of polyphonic melodies in musicians and nonmusicians. Journal of Cognitive Neuroscience, 17, 1578–1592.

    Article  PubMed  Google Scholar 

  • Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893–906.

    Article  PubMed  Google Scholar 

  • Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.

    Article  PubMed  Google Scholar 

  • Hove, M. J., & Keller, P. E. (2015). Impaired movement timing in neurological disorders: rehabilitation and treatment strategies. Annals of the New York Academy of Sciences, 1337, 111–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hove, M. J., Keller, P. E., & Krumhansl, C. L. (2007). Sensorimotor synchronization with chords containing tone-onset asynchronies. Attention, Perception, and Psychophysics, 69, 699–708.

    Article  Google Scholar 

  • Hove, M. J., Marie, C., Bruce, I. C., & Trainor, L. J. (2014). Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proceedings of the National Academy of Sciences of the United States of America, 111, 10383–10388.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller, P. E., & Repp, B. H. (2005). Staying offbeat: Sensorimotor syncopation with structured and unstructured auditory sequences. Psychological Research Psychologische Forschung, 69, 292–309.

    Article  PubMed  Google Scholar 

  • Keller, P. E., & Rieger, M. (2009). Special issue - Musical movement and synchronization. Music Perception: An Interdisciplinary Journal, 26, 397–400.

    Article  Google Scholar 

  • Kelso, J. S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT press.

  • Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly of rhythmic movement. Routledge.

  • Large, E. W. (2000). On synchronizing movements to music. Human Movement Science, 19, 527–566.

    Article  Google Scholar 

  • Large, E. W. (2008). Resonating to musical rhythm: Theory and experiment. In S. Grondin (Ed.), The psychology of time (pp. 189–231). Cambridge: Emerald.

    Google Scholar 

  • Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1–37.

    Article  Google Scholar 

  • Leman, M., Moelants, D., Varewyck, M., Styns, F., van Noorden, L., & Martens, J. P. (2013). Activating and relaxing music entrains the speed of beat synchronized walking. PloS One, 8, e67932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenc, T., Keller, P. E., Varlet, M., & Nozaradan, S. (2018). Neural tracking of the musical beat is enhanced by low-frequency sounds. Proceedings of the National Academy of Sciences of the United States of America, 115, 8221–8226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leow, L. A., Parrott, T., & Grahn, J. A. (2014). Individual differences in beat perception affect gait responses to low-and high-groove music. Frontiers in Human Neuroscience, 8, 811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim, I., van Wegen, E., de Goede, C., Deutekom, M., Nieuwboer, A., Willems, A., Jones, D., Rochester, L., & Kwakkel, G. (2005). Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clinical Rehabilitation, 19, 695–713.

    Article  PubMed  Google Scholar 

  • Lopresti-Goodman, S. M., Richardson, M. J., Silva, P. L., & Schmidt, R. C. (2008). Period basin of entrainment for unintentional visual coordination. Journal of Motor Behavior, 40, 3–10.

    Article  PubMed  Google Scholar 

  • MacDougall, H. G., & Moore, S. T. (2005). Marching to the beat of the same drummer: the spontaneous tempo of human locomotion. Journal of Applied Physiology, 99, 1164–1173.

    Article  PubMed  Google Scholar 

  • Malcolm, M. P., Massie, C., & Thaut, M. (2009). Rhythmic auditory-motor entrainment improves hemiparetic arm kinematics during reaching movements: a pilot study. Topics in Stroke Rehabilitation, 16, 69–79.

    Article  PubMed  Google Scholar 

  • Marie, C., & Trainor, L. J. (2013). Development of simultaneous pitch encoding: infants show a high voice superiority effect. Cerebral Cortex, 23, 690–669.

    Article  Google Scholar 

  • McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 62, 22–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moelants, D. (2002). Preferred tempo reconsidered. In C. Stevens, D. Burnham, G. McPherson, E. Schubert, and J. Renwick (Ed.), Proceedings of the 7th international conference on music perception and cognition (pp. 580–583). Adelaide: Causal Production.

  • Moore, B. C., Glasberg, B. R., & Baer, T. (1997). A model for the prediction of thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society, 45, 224–240.

    Google Scholar 

  • Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., & Barabási, A. L. (2000). Self-organizing processes: The sound of many hands clapping. Nature, 403, 849–850.

    Article  PubMed  Google Scholar 

  • Novembre, G., Varlet, M., Muawiyath, S., Stevens, C. J., & Keller, P. E. (2015). The E-music box: an empirical method for exploring the universal capacity for musical production and for social interaction through music. Royal Society Open Science, 2, 150286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozaradan, S., Peretz, I., & Keller, P. E. (2016). Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Scientific Reports, 6, 20612.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien, F., & Cousineau, D. (2014). Representing error bars in within-subject designs in typical software packages. Quantitative Methods for Psychology, 10, 56–67.

    Article  Google Scholar 

  • Pecenka, N., Engel, A., & Keller, P. E. (2013). Neural correlates of auditory temporal predictions during sensorimotor synchronization. Frontiers in Human Neuroscience, 7, 380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peckel, M., Pozzo, T., & Bigand, E. (2014). The impact of the perception of rhythmic music on self-paced oscillatory movements. Frontiers in Psychology, 5, 1037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception: An Interdisciplinary Journal, 28, 3–14.

    Article  Google Scholar 

  • Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: movement influences infant rhythm perception. Science, 308, 1430–1430.

    Article  PubMed  Google Scholar 

  • Phillips-Silver, J., & Trainor, L. J. (2008). Vestibular influence on auditory metrical interpretation. Brain and Cognition, 67, 94–102.

    Article  PubMed  Google Scholar 

  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: a universal concept in nonlinear sciences (Vol. 12). Cambridge: Cambridge university press.

  • Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.

    Article  PubMed  Google Scholar 

  • Repp, B. H. (2006). Does an auditory distractor sequence affect self-paced tapping? Acta Psychologica, 121, 81–107.

    Article  PubMed  Google Scholar 

  • Repp, B. H., & Keller, P. E. (2004). Adaptation to tempo changes in sensorimotor synchronization: Effects of intention, attention, and awareness. Quarterly Journal of Experimental Psychology Section A, 57, 499–521.

    Article  Google Scholar 

  • Repp, B. H., & Knoblich, G. (2007). Action can affect auditory perception. Psychological Science, 18, 6–7.

    Article  PubMed  Google Scholar 

  • Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: a review of recent research (2006–2012). Psychonomic Bulletin and Review, 20, 403–452.

    Article  PubMed  Google Scholar 

  • Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C. (2007). Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Human Movement Science, 26, 867–891.

    Article  PubMed  Google Scholar 

  • Roerdink, M., Bank, P. J., Peper, C. L. E., & Beek, P. J. (2011). Walking to the beat of different drums: Practical implications for the use of acoustic rhythms in gait rehabilitation. Gait and Posture, 33, 690–694.

    Article  PubMed  Google Scholar 

  • Romero, V., Coey, C., Schmidt, R. C., & Richardson, M. J. (2012). Movement coordination or movement interference: Visual tracking and spontaneous coordination modulate rhythmic movement interference. PLoS One, 7, e44761.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross, J. M., Warlaumont, A. S., Abney, D. H., Rigoli, L. M., & Balasubramaniam, R. (2016). Influence of musical groove on postural sway. Journal of Experimental Psychology: Human Perception and Performance, 42, 308–319.

    PubMed  Google Scholar 

  • Scherer, K. R., & Oshinsky, J. S. (1977). Cue utilization in emotion attribution from auditory stimuli. Motivation and Emotion, 1, 331–346.

    Article  Google Scholar 

  • Schmidt, R. C., & O’Brien, B. (1997). Evaluating the dynamics of unintended interpersonal coordination. Ecological Psychology, 9(3), 189–206.

    Article  Google Scholar 

  • Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal coordination. In A. Fuchs & V. K. Jirsa (Eds.), Coordination: Neural, behavioral and social dynamics (pp. 281–308). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Schmidt, R. C., Richardson, M. J., Arsenault, C., & Galantucci, B. (2007). Visual tracking and entrainment to an environmental rhythm. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 860–870.

    PubMed  Google Scholar 

  • Schmidt, R. C., & Turvey, M. T. (1992). Long-term consistencies in assembling coordinated rhythmic movements. Human Movement Science, 11(3), 349–376.

    Article  Google Scholar 

  • Snyder, J., & Krumhansl, C. L. (2001). Tapping to ragtime: Cues to pulse finding. Music Perception: An Interdisciplinary Journal, 18, 455–489.

    Article  Google Scholar 

  • Stupacher, J., Hove, M. J., & Janata, P. (2016). Audio features underlying perceived groove and sensorimotor synchronization in music. Music Perception: An Interdisciplinary Journal, 33, 571–589.

    Article  Google Scholar 

  • Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: a TMS investigation. Brain and Cognition, 82, 127–136.

    Article  PubMed  Google Scholar 

  • Styns, F., van Noorden, L., Moelants, D., & Leman, M. (2007). Walking on music. Human Movement Science, 26, 769–785.

    Article  PubMed  Google Scholar 

  • Tamir-Ostrover, H., & Eitan, Z. (2015). Higher is faster: Pitch register and tempo preferences. Music Perception, 33, 179–198.

    Article  Google Scholar 

  • Thaut, M. H., McIntosh, G. C., & Rice, R. R. (1997). Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. Journal of the Neurological Sciences, 151, 207–212.

    Article  PubMed  Google Scholar 

  • Thaut, M. H., McIntosh, G. C., Rice, R. R., Miller, R. A., Rathbun, J., & Brault, J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Movement Disorders, 11, 193–200.

    Article  PubMed  Google Scholar 

  • Todd, N. P., & Cody, F. W. (2000). Vestibular responses to loud dance music: A physiological basis of the “rock and roll threshold”? The Journal of the Acoustical Society of America, 107, 496–500.

    Article  PubMed  Google Scholar 

  • Todd, N. P., & Lee, C. S. (2015). The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives. Frontiers in Human Neuroscience, 9, 444.

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd, N. P., Rosengren, S. M., & Colebatch, J. G. (2008). Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neuroscience Letters, 444, 36–41.

    Article  PubMed  Google Scholar 

  • Todd, N. P., Rosengren, S. M., & Colebatch, J. G. (2009). A utricular origin of frequency tuning to low-frequency vibration in the human vestibular system? Neuroscience Letters, 451, 175–180.

    Article  PubMed  Google Scholar 

  • Torre, K., Varlet, M., & Marmelat, V. (2013). Predicting the biological variability of environmental rhythms: Weak or strong anticipation for sensorimotor synchronization? Brain and Cognition, 83, 342–350.

    Article  PubMed  Google Scholar 

  • Trainor, L. J., Gao, X., Lei, J. J., Lehtovaara, K., & Harris, L. R. (2009). The primal role of the vestibular system in determining musical rhythm. Cortex, 45, 35–43.

    Article  PubMed  Google Scholar 

  • Van Der Steen, M. C., & Keller, P. E. (2013). The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization. Frontiers in Human Neuroscience, 7, 253.

    PubMed  PubMed Central  Google Scholar 

  • Van Dyck, E., Moelants, D., Demey, M., Deweppe, A., Coussement, P., & Leman, M. (2013). The impact of the bass drum on human dance movement. Music Perception: An Interdisciplinary Journal, 30, 349–359.

    Article  Google Scholar 

  • Van Dyck, E., Moens, B., Buhmann, J., Demey, M., Coorevits, E., Bella, D., S., & Leman, M. (2015). Spontaneous entrainment of running cadence to music tempo. Sports Medicine-open, 1, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Noorden, L., & Moelants, D. (1999). Resonance in the perception of musical pulse. Journal of New Music Research, 28, 43–66.

    Article  Google Scholar 

  • Varlet, M., Bucci, C., Richardson, M. J., & Schmidt, R. C. (2015). Informational constraints on spontaneous visuomotor entrainment. Human Movement Science, 41, 265–281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varlet, M., Coey, C. A., Schmidt, R. C., Marin, L., Bardy, B. G., & Richardson, M. J. (2014). Influence of stimulus velocity profile on rhythmic visuomotor coordination. Journal of Experimental Psychology: Human Perception and Performance, 40, 1849–1860.

    PubMed  Google Scholar 

  • Varlet, M., Coey, C. A., Schmidt, R. C., & Richardson, M. J. (2012). Influence of stimulus amplitude on unintended visuomotor entrainment. Human Movement Science, 31, 541–552.

    Article  PubMed  Google Scholar 

  • Varlet, M., Novembre, G., & Keller, P. E. (2017). Dynamical entrainment of corticospinal excitability during rhythmic movement observation: A Transcranial Magnetic Stimulation study. European Journal of Neuroscience, 45, 1465–1472.

    Article  PubMed  Google Scholar 

  • Varlet, M., Schmidt, R. C., & Richardson, M. J. (2016). Influence of internal and external noise on spontaneous visuomotor synchronization. Journal of Motor Behavior, 48, 122–131.

    Article  PubMed  Google Scholar 

  • Wojtczak, M., Mehta, A. H., & Oxenham, A. J. (2017). Rhythm judgments reveal a frequency asymmetry in the perception and neural coding of sound synchrony. Proceedings of the National Academy of Sciences of the United States of America, 114, 1201–1206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamm, A., Pfordresher, P. Q., & Palmer, C. (2015). Temporal coordination in joint music performance: Effects of endogenous rhythms and auditory feedback. Experimental Brain Research, 233, 607–615.

    Article  PubMed  Google Scholar 

  • Zamm, A., Wellman, C., & Palmer, C. (2016). Endogenous rhythms influence interpersonal synchrony. Journal of Experimental Psychology: Human Perception and Performance, 42, 611–616.

    PubMed  Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547–558.

    Article  PubMed  Google Scholar 

  • Zbikowsky, L. (2002). Conceptualizing music: Cognitive structure, theory, and analysis. New York: Oxford University Press.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by an Australian Research Council Discovery project (DP170104322) and an Australian Research Council Future Fellowship grant awarded to P.K. (FT140101162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Varlet.

Ethics declarations

Conflict of interest

Manuel Varlet declares that he has no conflict of interest. Rohan Williams declares that he has no conflict of interest. Peter Keller declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varlet, M., Williams, R. & Keller, P.E. Effects of pitch and tempo of auditory rhythms on spontaneous movement entrainment and stabilisation. Psychological Research 84, 568–584 (2020). https://doi.org/10.1007/s00426-018-1074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1074-8

Navigation