Skip to main content
Log in

Simple reaction time and size–distance integration in virtual 3D space

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Simple reaction time to visual stimuli depends on several stimulus properties. Recently, converging evidence showed that larger stimulus size evokes faster reactions and that this effect seemingly depends on the stimulus’ perceived size rather than on physical stimulus properties. Size–distance scaling usually is regarded as the main functional mechanism underlying size perception. Yet, the role of stimulus depth (distance to a target) has often been neglected in previous studies. Hence, in the present investigation, stimuli were generated using stereo head mounted displays to manipulate stimulus depth. In Experiment 1, a large or small target was presented within the center of a reference plane, either in the same depth plane or displaced (near, far) while participants had to perform a simple reaction time task. At the same time, the target was modulated such that either retinal size was constant or variable across depth planes. In Experiments 2 and 3 the reference plane was shifted along with the target (blocked or on a trial-by-trial basis), while retinal size modulation was equal to Experiment 1. As expected, participants reacted faster to physically larger targets. Also Experiment 1 revealed faster reaction times for closer targets, while the commonly described connection between perceived size (i.e., size–distance scaling) was not apparent in any experiment. Thus, unlike past findings using a virtual three-dimensional task-setting (as induced by binocular disparity) reaction times are not affected by variations of perceived stimulus size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37, 379–384.

    Article  PubMed  Google Scholar 

  • Balota, D. A., & Yap, M. J. (2011). moving beyond the mean in studies of mental chronometry the power of response time distributional analyses. Current Directions in Psychological Science, 20, 160–166.

    Article  Google Scholar 

  • Blake, R., Sloane, M., & Fox, R. (1981). Further developments in binocular summation. Perception and Psychophysics, 30, 266–276.

    Article  PubMed  Google Scholar 

  • Broggin, E., Savazzi, S., & Marzi, C. A. (2012). Similar effects of visual perception and imagery on simple reaction time. Quarterly Journal of Experimental Psychology (2006), 65, 151–164.

  • Cattell, J. M. (1886). The influence of the intensity of the stimulus on the length of the reaction time. Brain, 8, 512–515.

    Article  Google Scholar 

  • Caziot, B., & Backus, B. T. (2015). Stereoscopic Offset Makes Objects Easier to Recognize. PLoS ONE, 10, e0129101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Q., Weidner, R., Vossel, S., Weiss, P. H., & Fink, G. R. (2012). Neural mechanisms of attentional reorienting in three-dimensional space. The Journal of Neuroscience, 32, 13352–13362.

    Article  PubMed  Google Scholar 

  • de Gawryszewski, L. G., Riggio, L., Rizzolatti, G., & Umiltá, C. (1987). Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia, 25, 19–29.

    Article  Google Scholar 

  • Dent, K., Braithwaite, J. J., He, X., & Humphreys, G. W. (2012). Integrating space and time in visual search: how the preview benefit is modulated by stereoscopic depth. Vision Research, 65, 45–61.

    Article  PubMed  Google Scholar 

  • Downing, C. J., & Pinker, S. (1985). The Spatial Structure of Visual Attention. In M. I. Posner & O. S. Marin (Eds.), Mechanisms of Attention: Attention and Performance XI (pp. 171–187). Hillsdale: Erlbaum.

    Google Scholar 

  • Epstein, W., Park, J., & Casey, A. (1961). The current status of the size-distance hypotheses. Psychological Bulletin, 58, 491–514.

    Article  PubMed  Google Scholar 

  • Finlayson, N. J., & Grove, P. M. (2015). Visual search is influenced by 3D spatial layout. Attention, Perception, & Psychophysics, 77, 2322–2330.

    Article  Google Scholar 

  • Finlayson, N. J., Remington, R. W., & Grove, P. M. (2012). The role of presentation method and depth singletons in visual search for objects moving in depth. Journal of Vision, 12, 13.

    Article  PubMed  Google Scholar 

  • Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception and Psychophysics, 65, 999–1010.

    Article  PubMed  Google Scholar 

  • Gilliland, K., & Haines, R. F. (1975). Binocular summation and peripheral visual response time. American Journal of Optometry & Physiological Optics, 52, 834–839.

    Article  Google Scholar 

  • Goldstein, E. (2013). Sensation and perception. Cengage Learning.

  • Gregory, R. L. (1963). Distortion of Visual Space as Inappropriate Constancy Scaling. Nature, 199, 678–680.

    Article  PubMed  Google Scholar 

  • Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical Transactions of the Royal Society B: Biological Sciences, 352, 1121–1127.

    Article  Google Scholar 

  • Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11, 1–21.

    Article  Google Scholar 

  • Jainta, S., Blythe, H. I., & Liversedge, S. P. (2014). Binocular Advantages in Reading. Current Biology, 24, 526–530.

    Article  PubMed  Google Scholar 

  • Knapp, J. M., & Loomis, J. M. (2004). Limited Field of View of Head-Mounted Displays Is Not the Cause of Distance Underestimation in Virtual Environments. Presence: Teleoperators and Virtual Environments, 13, 572–577.

    Article  Google Scholar 

  • Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials in Quantitative Methods for Psychology, 4, 35–45.

    Article  Google Scholar 

  • Luce, R. D. (1986). Response Times. Oxford University Press.

  • Marzi, C. A., Mancini, F., Metitieri, T., & Savazzi, S. (2006). Retinal eccentricity effects on reaction time to imagined stimuli. Neuropsychologia, 44, 1489–1495.

    Article  PubMed  Google Scholar 

  • Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: a diffusion model analysis. Psychonomic Bulletin & Review, 16, 798–817.

    Article  Google Scholar 

  • Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64.

    Article  Google Scholar 

  • Murgia, A., & Sharkey, P. M. (2009). Estimation of distances in virtual environments using size constancy. The International Journal of Virtual Reality, 8, 67–74.

    Google Scholar 

  • Murray, S. O., Boyaci, H., & Kersten, D. (2006). The representation of perceived angular size in human primary visual cortex. Nature Neuroscience, 9, 429–434.

    Article  PubMed  Google Scholar 

  • Naceri, A., Chellali, R., Dionnet, F., & Toma, S. (2010). Depth perception within virtual environments: comparison between two display technologies. International Journal On Advances in Intelligent Systems, 3, 51–64.

    Google Scholar 

  • Neri, P., Bridge, H., & Heeger, D. J. (2004). Stereoscopic processing of absolute and relative disparity in human visual cortex. Journal of Neurophysiology, 92, 1880–1891.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  • Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychological Methods, 8, 434–447.

    Article  PubMed  Google Scholar 

  • Parker, A. J. (2007). Binocular depth perception and the cerebral cortex. Nature Reviews Neuroscience, 8, 379–391.

    Article  PubMed  Google Scholar 

  • Parks, N. A., & Corballis, P. M. (2006). Attending to depth: electrophysiological evidence for a viewer-centered asymmetry. NeuroReport, 17, 643–647.

    Article  PubMed  Google Scholar 

  • Plewan, T., Weidner, R., & Fink, G. R. (2012). The influence of stimulus duration on visual illusions and simple reaction time. Experimental Brain Research, 223, 367–375.

    Article  PubMed  Google Scholar 

  • Ponzo, M. (1928). Urteilstäuschungen über Mengen. Archiv Für Die Gesamte Psychologie, 65, 129–162.

    Google Scholar 

  • Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532.

    Article  PubMed  Google Scholar 

  • Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The Perception of Egocentric Distances in Virtual Environments - A Review. ACM Computing Surveys, 46, 23:1–23:40.

  • Ross, H. E., & Plug, C. (1998). The history of size constancy and size illusions. In V. Walsh & J. Kulikowski (Eds.), Perceptual Constancy: Why Things Look as they Do (pp. 499–528). Cambridge: Cambridge University Press.

    Google Scholar 

  • Savazzi, S., Emanuele, B., Scalf, P., & Beck, D. (2012). Reaction times and perceptual adjustments are sensitive to the illusory distortion of space. Experimental Brain Research, 218, 119–128.

    Article  PubMed  Google Scholar 

  • Schiffman, H. R. (1967). Size-Estimation of Familiar Objects under Informative and Reduced Conditions of Viewing. The American Journal of Psychology, 80, 229–235.

    Article  PubMed  Google Scholar 

  • Shulman, G. L., Remington, R. W., & McLean, J. P. (1979). Moving attention through visual space. Journal of Experimental Psychology: Human Perception and Performance, 5, 522–526.

    PubMed  Google Scholar 

  • Slack, C. W. (1956). Familiar size as a cue to size in the presence of conflicting cues. Journal of Experimental Psychology, 52, 194–198.

    Article  PubMed  Google Scholar 

  • Sperandio, I., Chouinard, P. A., & Goodale, M. A. (2012). Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. Nature Neuroscience, 15, 540–542.

    Article  PubMed  Google Scholar 

  • Sperandio, I., Savazzi, S., Gregory, R. L., & Marzi, C. A. (2009). Visual reaction time and size constancy. Perception, 38, 1601–1609.

    Article  PubMed  Google Scholar 

  • Sperandio, I., Savazzi, S., & Marzi, C. A. (2010). Is simple reaction time affected by visual illusions? Experimental Brain Research, 201, 345–350.

    Article  PubMed  Google Scholar 

  • Teichner, W. H., & Krebs, M. J. (1972). Laws of the simple visual reaction time. Psychological Review, 79, 344–358.

    Article  PubMed  Google Scholar 

  • Theeuwes, J., Atchley, P., & Kramer, A. F. (1998). Attentional control within 3-D space. Journal of Experimental Psychology: Human Perception and Performance, 24, 1476–1485.

    PubMed  Google Scholar 

  • Ulrich, R., Rinkenauer, G., & Miller, J. (1998). Effects of stimulus duration and intensity on simple reaction time and response force. Journal of Experimental Psychology Human Perception and Performance, 24, 915–928.

    Article  PubMed  Google Scholar 

  • Wakayama, A., Matsumoto, C., Ohmure, K., Inase, M., & Shimomura, Y. (2011). Influence of target size and eccentricity on binocular summation of reaction time in kinetic perimetry. Vision Research, 51, 174–178.

    Article  PubMed  Google Scholar 

  • Weidner, R., Plewan, T., Chen, Q., Buchner, A., Weiss, P. H., & Fink, G. R. (2014). The Moon Illusion and Size-Distance Scaling—Evidence for Shared Neural Patterns. Journal of Cognitive Neuroscience, 26, 1871–1882.

    Article  PubMed  Google Scholar 

  • Whelan, R. (2010). Effective analysis of reaction time data. The Psychological Record, 58, 475–482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Plewan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plewan, T., Rinkenauer, G. Simple reaction time and size–distance integration in virtual 3D space. Psychological Research 81, 653–663 (2017). https://doi.org/10.1007/s00426-016-0769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-016-0769-y

Keywords

Navigation