Skip to main content
Log in

The relation between measures of cognitive and motor functioning in 5- to 6-year-old children

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Specific relations between executive functions (working memory capacity, planning and problem-solving, inhibitory control) and motor skill performance (anticipatory motor planning, manual dexterity) were examined in 5- to 6-year-old children (N = 40). Results showed that the two motor skill components were not correlated. Additionally, it was found that response planning performance was a significant predictor of anticipatory motor planning performance, whereas inhibitory control and working memory capacity measures were significant predictors of manual dexterity scores. Taken together, these results suggest that cognitive and motor skills are linked, but that manual dexterity and anticipatory motor planning involve different specialized skills. The current study provides support for specific relations between cognitive and motor performance, which has implications for early childhood cognitive-motor training and intervention programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alloway, T. P., & Temple, K. J. (2007). A comparison of working memory skills and learning in children with developmental coordination disorder and moderate learning difficulties. Applied Cognitive Psychology, 21, 473–487.

    Article  Google Scholar 

  • Anderson, P., Anderson, V., & Lajoie, G. (1996). The Tower of London test: validation and standardization for pediatric populations. The Clinical Neuropsychologist, 10(1), 54–65.

    Article  Google Scholar 

  • Baddeley, A. D. (2003). Working memory: looking back and looking forward. Nature Reviews, 4, 829–839.

    Article  PubMed  Google Scholar 

  • Bell, J. A., & Livesey, P. J. (1985). Cue significance and response regulation in 3-year-old to 6-year-old children’s learning of multiple-choice discrimination tasks. Developmental Psychobiology, 18(3), 229–245.

    Article  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57, 289–300.

    Google Scholar 

  • Berg, W. K., & Byrd, D. L. (2002). The Tower of London Spatial Problem Solving Task: enhancing Clinical and Research Implementation. Journal of Experimental and Clinical Neuropsychology, 25(5), 586–604.

    Article  Google Scholar 

  • Bernard, J. A., & Seidler, R. D. (2013). Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. The Cerebellum, 12(5), 721–737.

    Article  PubMed  Google Scholar 

  • Campolo, D., Laschi, C., Keller, F., & Guglielmelli, E. (2007). A Mechatronic Platform for Early Diagnosis of Neurodevelopmental Disorders. RSJ Advanced Robotics Journal, 21(10), 1131–1150.

    Article  Google Scholar 

  • Chelune, G. J., & Baer, R. A. (1986). Developmental norms for the Wisconsin card sorting test. Journal of Clinical and Experimental Neuropsychology, 8(3), 219–228.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analyses for the behavioral sciences (2nd ed.). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Corsi, P. M. (1972). Human memory and the medial temporal region of the brain [PhD-Thesis]. McGill University.

  • Cowan, N. (1998). Visual and auditory working memory capacity. Trends in Cognitive Sciences, 2, 77–78.

    Article  PubMed  Google Scholar 

  • Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 44–56.

    Article  PubMed  Google Scholar 

  • Diamond, A. (2013). Executive functions. The Annual Review of Psychology, 64, 135–168.

    Article  PubMed  Google Scholar 

  • Diamond, A., Barnett, W. S., Thomas, J., & Munro, S. (2007). The early years—Preschool program improves cognitive control. Science, 318(5855), 1387–1388.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drowatzky, J. N., & Zuccato, E. C. (1967). Interrelationships between selected measures of static and dynamic balance. Research Quarterly, 38, 509–510.

    PubMed  Google Scholar 

  • Edelman, G. M. (1987). Neural darwinism: the theory of neuronal group selection. New York: Basic Books.

    Google Scholar 

  • Edelman, G. M. (1989). The remembered present: a biological theory of consciousness. New York: Basic Books.

    Google Scholar 

  • Eliasson, A. C., Rosblad, B., & Forssberg, H. (2004). Disturbances in programming goal-directed arm movements in children with ADHD. Developmental Medicine and Child Neurology, 46(1), 19–27.

    Article  PubMed  Google Scholar 

  • Espy, K. A. (2004). Using developmental, cognitive, and neuroscience approaches to understand executive control in young children. Developmental Neuropsychology, 26, 379–384.

    Article  PubMed  Google Scholar 

  • Fliers, E., Rommelse, N., Vermeulen, S. H. H. M., Altink, M., Buschgens, C. J. M., Faraone, S. V., et al. (2008). Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender. Journal of Neural Transmission, 115(2), 211–220.

    Article  PubMed  Google Scholar 

  • Grissmer, D., Grimm, K. J., Aiyer, S. M., Murrah, W. M., & Steele, J. S. (2010). Fine motor skills and early comprehension of the world: two new school readiness indicators. Developmental Psychology, 46(5), 1008–1017.

    Article  PubMed  Google Scholar 

  • Haga, M., Pedersen, A. V., & Sigmundsson, H. (2008). Interrelationship among selected measures of motor skills. Child: Care, Health and Development, 34(2), 245–248.

    Google Scholar 

  • Henderson, S. E., & Sugden, D. A. (1992). The movement assessment battery for children. London: Harcourt.

    Google Scholar 

  • Henderson, S. E., Sugden, D. A., & Barnett, A. L. (2007). Movement assessment battery for children—second edition (movement ABC-2). London: Harcourt Assessment.

    Google Scholar 

  • Herbort, O., & Butz, M. V. (2011). Habitual and goal-directed factors in (everyday) object handling. Experimental Brain Research, 213, 371–382.

    Article  PubMed  Google Scholar 

  • Hill, E. L., & Khanem, F. (2009). The development of hand preference in children: the effect of task demands and links with manual dexterity. Brain and Cognition, 71(2), 99–107.

    Article  PubMed  Google Scholar 

  • Hughes, C. M. L., & Franz, E. A. (2008). Goal-related planning constraints in bimanual grasping and placing of objects. Experimental Brain Research, 188, 541–550.

    Article  PubMed  Google Scholar 

  • Hughes, C. M. L., Haddad, J. M., Franz, E. A., Zelaznik, H. N., & Ryu, J. H. (2011). Physically coupling two objects in a bimanual task alters kinematics but not end-state comfort. Experimental Brain Research, 211(2), 219–229.

    Article  PubMed  Google Scholar 

  • Hughes, C. M. L., & Seegelke, C. (2013). Perturbations in action goal influence bimanual grasp posture planning. Journal of Motor Behavior, 45(6), 473–478.

    Article  PubMed  Google Scholar 

  • Hughes, C. M. L., Seegelke, C., & Schack, T. (2012). The influence of initial and final precision on motor planning: individual differences in end-state comfort during unimanual grasping and placing. Journal of Motor Behavior, 44(3), 1–7.

    Google Scholar 

  • Jongbloed-Pereboom, M., Nijhuis-van der Sanden, M. W. G., Saraber-Schiphorst, N., Craje, C., & Steenbergen, B. (2013). Anticipatory action planning increases from 3 to 10 years of age in typically developing children. Journal of Experimental Child Psychology, 114(2), 295–305.

    Article  PubMed  Google Scholar 

  • Kaplan, B. J., Wilson, B. N., Dewey, D., & Crawford, S. G. (1998). DCD may not be a discrete disorder. Human Movement Science, 17, 471–490.

    Article  Google Scholar 

  • Kessels, R. P. C., van Zandvoort, M. J. E., Postma, A., Kappelle, L. J., & de Haan, E. H. F. (2000). The Corsi Block-tapping task: standardization and normative data. Applied Neuropsychology, 7(4), 252–258.

    Article  PubMed  Google Scholar 

  • Kilshaw, D., & Annett, M. (1983). Right- and left-hand skill I: effects of age, sex and hand preference showing superior skill in left-handers. British Journal of Psychology, 74, 253–268.

    Article  PubMed  Google Scholar 

  • Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.

    Google Scholar 

  • Livesey, D., Keen, J., Rouse, J., & White, F. (2006). The relationship between measures of executive function, motor performance and externalising behaviour in 5- and 6-year-old children. Human Movement Science, 25(1), 50–64.

    Article  PubMed  Google Scholar 

  • Logan, S. W., & Fischman, M. G. (2011). The relationship between end-state comfort effects and memory performance in serial and free recall. Acta Psychologica, 137(3), 292–299.

    Article  PubMed  Google Scholar 

  • Lorås, H., & Sigmundsson, H. (2012). Interrelations between three fine motor skills in young adults. Perceptual and Motor Skills, 115(1), 171–178.

    Article  PubMed  Google Scholar 

  • Lorås, H., Stensdotter, A.-K., Öhberg, F., & Sigmundsson, H. (2013). Individual differences in motor timing and its relation to cognitive and fine motor skills. PLoS One, 8(7), e69353.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malloy-Diniz, L. F., Cardoso-Martins, C., Nassif, E. P., Levy, A. M., Leite, W. B., & Fuentes, D. (2008). Planning abilities of children aged 4 years and 9 months to 8 ½ years. Effects of age, fluid intelligence and school type on peformance in the Tower of London test. Dementia and Neuropsychologia, 2(1), 26–30.

    Google Scholar 

  • Manjunath, N. K., & Telles, S. (2001). Improved performance in the Tower of London test following yoga. Indian Journal of Physiological Pharmacology, 45, 351–354.

    Google Scholar 

  • Michel, E., Roethlisberger, M., Neuenschwander, R., & Roebers, C. M. (2011). Development of cognitive skills in children with motor coordination impairments at 12-month follow-up. Child Neuropsychology, 17(2), 151–172.

    Article  PubMed  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex ‘‘frontal lobe’’ tasks: a latent variable analysis. Cognitive Psychology, 41, 49–100.

    Article  PubMed  Google Scholar 

  • Mueller, S. T. (2013). PEBL: The psychology experiment building language (Version 0.13) [Computer experiment programming language]. Retrieved Feb. 2013 from http://pebl.sourceforge.net.

  • Ozonoff, S., & Strayer, D. L. (2001). Further evidence of intact working memory in autism. Journal of Autism and Developmental Disorders, 31(3), 257–263.

    Article  PubMed  Google Scholar 

  • Pangelinan, M. M., Zhang, G. Y., VanMeter, J. W., Clark, J. E., Hatfield, B. D., & Haufler, A. J. (2011). Beyond age and gender: relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. Neuroimage, 54(4), 3093–3100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37(1), 51–87.

    Article  PubMed  Google Scholar 

  • Petermann, F. (2009). Movement assessment battery for children-2 (M-ABC-2) (2. überarb. erw. Aufl.). Frankfurt/M.: Pearson Assessment.

  • Piaget, J. (1952). The origins of intelligence in the child (M. Cook, Trans.). New York: International Universities Press. (Original work published in 1936).

  • Piek, J. P., Dyck, M. J., Francis, M., & Conwell, A. (2007). Working memory, processing speed, and set-shifting in children with developmental coordination disorder and attention-deficit-hyperactivity disorder. Developmental Medicine and Child Neurology, 49(9), 678–683.

    Article  PubMed  Google Scholar 

  • Piek, J. P., Pitcher, T. M., & Hay, D. A. (1999). Motor coordination and kinaesthesis in boys with attention deficit-hyperactivity disorder. Developmental Medicine and Child Neurology, 41(3), 159–165.

    Article  PubMed  Google Scholar 

  • Piper, B. J., Li, V., Eiwaz, M. A., Kobel, Y. V., Benice, T. S., Chu, A. M., et al. (2012). Executive function on the Psychology Experiment Building Language tests. Behavior Research Methods, 44(1), 110–123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rademaker, K. J., Lam, J. N. G. P., Van Haastert, I. C., Uiterwaal, C. S. P. M., Lieftink, A. F., Groenendaal, F., & De Vries, L. S. (2004). Larger corpus callosum size with better motor performance in prematurely born children. Seminars in Perinatology, 28(4), 279–287.

    Article  PubMed  Google Scholar 

  • Roebers, C. M., & Kauer, M. (2009). Motor and cognitive control in a normative sample of 7-year-olds. Developmental Science, 12, 175–181.

    Article  PubMed  Google Scholar 

  • Rosenbaum, D. A., Marchak, F., Barnes, H. J., Vaughan, J., Slotta, J. D., & Jorgensen, M. J. (1990). Constraints for action selection: overhand versus underhand grips. In M. Jeannerod (Ed.), Attention and performance XIII (pp. 321–342). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Roth, M., McCaul, E., & Barnes, K. (1993). Who becomes an at-risk student—the predictive value of a kindergarten screening battery. Exceptional Children, 59(4), 348–358.

    PubMed  Google Scholar 

  • Schack, T., & Mechsner, F. (2006). Representation of motor skills in human long-term-memory. Neuroscience Letters, 391, 77–81.

    Article  PubMed  Google Scholar 

  • Sergeant, J. (2000). The cognitive-energetic model: an empirical approach to attention-deficit hyperactivity disorder. Neuroscience and Biobehavioral Reviews, 24, 7–12.

    Article  PubMed  Google Scholar 

  • Shallice, T. (1982). Specific impairment of planning. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 298(1089), 199–209.

    Article  PubMed  Google Scholar 

  • Stöckel, T., Hughes, C. M. L., & Schack, T. (2012). Representation of postures and anticipatory motor planning in children. Psychological Research, 76(6), 768–776.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  • Sugden, D. (Ed.). (2006). Developmental coordination disorder as a specific learning difficulty. Leeds Consensus Statement. Cardiff: The Dyscovery Trust.

    Google Scholar 

  • Thibaut, J. P., & Toussaint, L. (2010). Developing motor planning over ages. Journal of Experimental Child Psychology, 105, 116–129.

    Article  PubMed  Google Scholar 

  • Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2010). Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage, 49(1), 63–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verté, S., Geurts, H. M., Roeyers, H., Oosterlaan, J., & Sergeant, J. A. (2006). The relationship of working memory, inhibition, and response variability in child psychopathology. Journal of Neuroscience Methods, 151(1), 5–14.

    Article  PubMed  Google Scholar 

  • Wassenberg, R., Feron, F., Kessels, A., Hendriksen, J., Kalff, A., Kroes, M., et al. (2005). Relation between cognitive and motor performance in 5- to 6-year-old children: results from a largescale cross-sectional study. Child Development, 76(5), 1092–1103.

    Article  PubMed  Google Scholar 

  • Weigelt, M., Kunde, W., & Prinz, W. (2006). End-state comfort in bimanual object manipulation. Experimental Psychology, 53(2), 143–148. doi:10.1027/1618-3169.53.2.143.

    Article  PubMed  Google Scholar 

  • Weigelt, M., Rosenbaum, D. A., Huelshorst, S., & Schack, T. (2009). Moving and memorizing: motor planning modulates the recency effect in serial and free recall. Acta Psychologica, 132, 68–79.

    Article  PubMed  Google Scholar 

  • Weigelt, M., & Schack, T. (2010). The development of end-state comfort planning in preschool children. Experimental Psychology, 57(6), 476–482.

    Article  PubMed  Google Scholar 

  • Weimer, W. B. (1977). A conceptual framework for cognitive psychology: Motor theories of the mind. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: toward an ecological psychology (pp. 267–311). Hillsdale: Erlbaum.

    Google Scholar 

  • Wright, I., Waterman, M., Prescott, H., & Murdoch-Eaton, D. (2003). A new Stroop-like measure of inhibitory function development: typical developmental trends. Journal of Child Psychology and Psychiatry, 44(4), 561–575.

    Article  PubMed  Google Scholar 

  • Wunsch, K., Henning, A., Aschersleben, G., & Weigelt, M. (2013). A systematic review of the end-state comfort effect in normally developing children and in children with developmental disorders. Journal of Motor Learning and Development, 1(3), 59–76.

    Google Scholar 

  • Zelazo, P. D., Carter, A., Resnick, J. S., & Frye, D. (1997). Early development of executive function: a problem-solving framework. Review of General Psychology, 1, 198–226.

    Article  Google Scholar 

Download references

Ethical standard

The authors declare that they have no conflict of interest. All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from parents or guardians of all children included in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Stöckel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stöckel, T., Hughes, C.M.L. The relation between measures of cognitive and motor functioning in 5- to 6-year-old children. Psychological Research 80, 543–554 (2016). https://doi.org/10.1007/s00426-015-0662-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0662-0

Keywords

Navigation