Skip to main content
Log in

An enhanced experimental procedure to rationalize on the impairment of perception of action capabilities

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

It is well documented that changes in the physiological states of the perceiver–actor influence the perception of action capabilities. However, because experimental procedures of most studies involved a limitless availability for stimuli visual encoding and perceptual strategies, it remains difficult to adopt a single position among the large range of alternative interpretations for impaired perception. A reaching-to-grasp paradigm under breathing restriction was adapted from Graydon et al. (Cogn Emot 26:1301–1305, 2012) to standardize the time for encoding of stimuli information and narrowed the involvement of perceptual strategies. In the present study, we propose a highly controlled environment where the discrete information is presented during 300 ms, congruently with neurophysiological studies focused on visuomotor transformation. An underestimation of the perception of action capabilities is found under breath restriction, suggesting that 300 ms for stimuli encoding is sufficient to induce altered visuomotor brain transformations when limiting the involvement of perceptual strategies. This result suggests that such behavior could refer to an impaired brain potentiation of the perceptual occurrence, providing strong hypotheses on the brain dynamics of sensorimotor integration that underlie impaired perception of action capabilities in stressful situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bhalla, M., & Proffitt, D. R. (1999). Visual-motor recalibration in geographical slant perception. Journal of Experimental Psychology: Human Perception and Performance, 25, 1076–1096.

    PubMed  Google Scholar 

  • Binkofski, F., & Buxbaum, L. J. (2013). Two action systems in the human brain. Brain and Language,. doi:10.1016/j.bandl.2012.07.007.

    PubMed Central  Google Scholar 

  • Borghi, A. M., & Riggio, L. (2009). Sentence comprehension and simulation of object temporary, canonical and stable affordances. Brain Research, 1253, 117–128. doi:10.1016/j.brainres.2008.11.064.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences. New-York: Academic press.

    Google Scholar 

  • Daviaux, Y., Mignardot, J.-B., Cornu, C., & Deschamps, T. (2014). Effects of total sleep deprivation on the perception of action capabilities. Experimental Brain Research, 232, 2243–2253.

    Article  PubMed  Google Scholar 

  • Deschamps, T., Hug, F., Hodges, P. W., & Tucker, K. (2014). Influence of experimental pain on the perception of action capabilities and performance of a maximal single leg hop. The Journal of Pain, 15, 271.e1–271.e7.

    Article  Google Scholar 

  • di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91, 176–180.

    Article  PubMed  Google Scholar 

  • Ellis, R., & Tucker, M. (2000). Micro-affordance: the potentiation of components of action by seen objects. British Journal of Psychology, 91, 451–471.

    Article  PubMed  Google Scholar 

  • Eysenck, M. W., & Derakshan, N. (2011). New perspectives in attentional control theory. Personality and Individual Differences, 50, 955–960.

    Article  Google Scholar 

  • Eysenck, M. W., Derakshan, N., Santos, R., & Galvo, M. G. (2007). Anxiety and cognitive performance: attentional Control Theory. Emotion, 7, 336–353.

    Article  PubMed  Google Scholar 

  • Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Executive attention and metacognitive regulation. Consciousness and Cognition, 9, 288–307. doi:10.1006/ccog.2000.0447.Frern.

    Article  PubMed  Google Scholar 

  • Fischer, M. H. (2000). Estimating reachability: whole body engagement or postural stability? Human Movement Science, 19(297), 318.

    Google Scholar 

  • Franca, M., Turella, L., Canto, R., Brunelli, N., Allione, L., Andreasi, N. G., & Fadiga, L. (2012). Corticospinal facilitation during observation of graspable objects: a transcranial magnetic stimulation study. PLoS One, 7, e49025.

    Article  PubMed Central  PubMed  Google Scholar 

  • Franchak, J. M., van der Zalm, D. J., & Adolph, K. E. (2010). Learning by doing: action performance facilitates affordance perception. Vision Research, 50, 2758–2765.

    Article  PubMed Central  PubMed  Google Scholar 

  • Garbarini, F., & Adenzato, M. (2004). At the root of embodied cognition: cognitive science meets neurophysiology. Brain and Cognition, 56, 100–106. doi:10.1016/j.bandc.2004.06.003.

    Article  PubMed  Google Scholar 

  • Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.

    Google Scholar 

  • Gibson, J. J. (1977). The theory of affordances. Perceiving, acting, and knowing: toward an ecological psychology. Hillsdale: Erlbaum Associates, Inc.

    Google Scholar 

  • Graydon, M. M., Linkenauger, S. A., Teachman, B. A., & Proffitt, D. R. (2012). Scared stiff: the influence of anxiety on the perception of action capabilities. Cognition and Emotion, 26(1301–1315), 1–16.

    Google Scholar 

  • Guardia, D., Conversy, L., Jardri, R., Lafargue, G., Thomas, P., Dodin, V., et al. (2012). Imagining one’s won and someone else’s body actions: dissociation in anorexia nervosa. PLoS One, 7, e43241. doi:10.1371/journal.pone.0043241.

    Article  PubMed Central  PubMed  Google Scholar 

  • Guardia, D., Lafargue, G., Thomas, P., Dodin, V., Cottencin, O., & Luyat, M. (2010). Anticipation of body-scaled action is modified in anorexia nervosa. Neuropsychologia, 48, 3961–3966.

    Article  PubMed  Google Scholar 

  • Hackney, A. L., & Cinelli, M. E. (2013). Young and older adults use body-scaled information during a non-confined aperture crossing task. Experimental Brain Research, 225, 419–429.

    Article  PubMed  Google Scholar 

  • Hamilton, A.F., & Grafton, S.T. (2007). The motor hierarchy: from kinematics to goals and intentions. In Rosetti,Y., Kawato, M., Haggard, P. (eds.), Attention and performance.

  • Handy, T. C., Grafton, S. T., Shroff, N. M., Ketay, S., & Gazzaniga, M. S. (2003). Graspable objects grasp attention when the potential for action is recognized. Nature Neuroscience, 6, 421–427.

    Article  PubMed  Google Scholar 

  • Higuchi, T., Hatano, N., Soma, K., & Imanaka, K. (2009). Perception of spatial requirements for wheelchair locomotion in experienced users with Tetraplegia. Journal of Physiological Anthropology, 28, 15–21. doi:10.2114/jpa2.28.15.

    Article  PubMed  Google Scholar 

  • Higuchi, T., Murai, G., Kijima, A., Seya, Y., Wagman, J. B., & Imanaka, K. (2011). Athletic experience influences shoulder rotations when running through apertures. Human Movement Science, 30, 534–549.

    Article  PubMed  Google Scholar 

  • Hirose, N., & Nishio, A. (2001). The process of adaptation to perceiving new action capabilities. Ecological Psychology, 13, 49–69.

    Article  Google Scholar 

  • Huijbers, W., Pennartz, C. M., Beldzik, E., Domagalik, A., Vinck, M., Hofman, W. F., & Daselaar, S. M. (2014). Respiration phase-locks to fast stimulus presentations: implications for the interpretation of posterior midline “deactivations”. Humain Brain Mapping, 35, 4932–4943. doi:10.1002/hbm.22523.

    Article  Google Scholar 

  • Janelle, C. M. (2002). Anxiety, arousal and visual attention: a mechanistic account of performance variability. Journal of Sport Sciences, 20, 237–251.

    Article  Google Scholar 

  • Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Sledge Moore, K. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224. doi:10.1146/annurev.psych.59.103006.093615.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanai, R., & Rees, G. (2011). The structural basis of interindividual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12, 231–242.

    Article  PubMed  Google Scholar 

  • Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8, 159–166.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kingdom, F. A. A., & Prins, N. (2009). Psychophysics: a practical introduction. San Diego: Elsevier.

    Google Scholar 

  • Lee, A. C., Harris, J. P., Atkinson, E. A., & Fowler, M. S. (2001). Disruption of estimation of body-scaled aperture width in Hemiparkinson’s disease. Neuropsychologia, 39, 1097–1104.

    Article  PubMed  Google Scholar 

  • Linkenauger, S. A., Witt, J. K., & Proffitt, D. R. (2011). Taking a hands-on approach: apparent grasping ability scales the perception of perceived object size. Journal of Experimental Psychology: Human Perception and Performance, 37, 1432–1441.

    PubMed  Google Scholar 

  • Linkenauger, S. A., Witt, J. K., Stefanucci, J. K., Bakdash, J. Z., & Proffitt, D. R. (2009). The effects of handedness and reachability on perceived distance. Journal of Experimental Psychology: Human Perception and Performance, 35, 1649–1660.

    PubMed Central  PubMed  Google Scholar 

  • Lopresti-Goodman, S. M., Richardson, M. J., Baron, R. M., Carello, C., & Marsh, K. L. (2009). Task constraints on affordance boundaries. Motor Control, 13, 69–83.

    PubMed  Google Scholar 

  • Lopresti-Goodman, S. M., Turvey, M. T., & Frank, T. D. (2013). Negative hysteresis in the behavioral dynamics of the affordance “graspable”. Attention, Perception, and Psychophysics, 75, 1075–1091.

    Article  Google Scholar 

  • Makris, S., Hadar, A. A., & Yarrow, K. (2011). Viewing objects and planning actions: on the potentiation of grasping behaviours by visual objects. Brain and Cognition,. doi:10.1016/j.bandc.2011.08.002.

    PubMed  Google Scholar 

  • Mark, L. S. (1987). Eyeheight-scaled information about affordances: a study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13, 361–370.

    PubMed  Google Scholar 

  • Mealor, A. D., & Dienes, Z. (2013). The speed of metacognition: taking time to get to know one’s structural knowledge. Consciousness and Cognition, 22, 123–136. doi:10.1016/j.concog.2012.11.009.

    Article  PubMed  Google Scholar 

  • Natraj, N., Poole, V., Mizelle, J. C., Flumini, A., Borghi, A. M., & Wheaton, L. A. (2013). Context and hand posture modulate the neural dynamics of tool-object perception. Neuropsychologia, 51, 506–519.

    Article  PubMed  Google Scholar 

  • Nieuwenhuys, A., & Oudejans, R. R. D. (2012). Anxiety and perceptual-motor performance: toward an integrated model of concepts, mechanisms, and process. Psychological Research, 76, 747–759.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nieuwenhuys, A., Pijpers, J. R., Oudejans, R. R. D., & Bakker, F. C. (2008). The influence of anxiety on visual attention in climbing. Journal of Sport and Exercise Psychology, 30(171), 185.

    Google Scholar 

  • Noël, M., Bernard, A., & Luyat, M. (2011). The overestimation of performance: a specific bias of aging? Gériatrie et psychologie neuropsychiatrie du vieillissement, 9, 287–294. doi:10.1684/pnv.2011.0290.

    PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  • Oliveira, J. M., Volchan, E., Vargas, C. D., Gleiser, S., & David, I. A. (2012). Box for interaction with objects (BIO): a new device to synchronize the presentation of objects with electrophysiological recordings. Behavior Research Methods, 44, 1115–1120.

    Article  PubMed  Google Scholar 

  • Pijpers, J. R., Oudejans, R. R. D., & Bakker, F. C. (2007). Changes in the perception of action possibilities while climbing to fatigue on a climbing wall. Journal of Sports Sciences, 25, 97–110.

    Article  PubMed  Google Scholar 

  • Pijpers, J. R., Oudejans, R. R. D., Bakker, F. C., & Beek, P. J. (2006). The Role of anxiety in perceiving and realizing affordances. Ecological Psychology, 18, 131–161.

    Article  Google Scholar 

  • Proverbio, A. M. (2012). Tool perception suppresses 10–12 Hz μ rhythm of EEG over the somatosensory area. Biological Psychology, 91, 1–7.

    Article  PubMed  Google Scholar 

  • Proverbio, A. M., Adorni, R., & D’Aniello, G. E. (2011). 250 ms to code for action affordance during observation of manipulable objects. Neuropsychologia, 49, 2711–2717.

    Article  PubMed  Google Scholar 

  • Sakurai, R., Fujiwara, Y., Ishihara, M., Higuchi, T., Uchida, H., & Imanaka, K. (2013). Age-related self-overestimation of step-over ability in healthy older adults and its relationship to fall risk. BMC Geriatrics, 13, 44. doi:10.1186/1471-2318-13-44.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith, J. G., Harris, J. P., Khan, S., Atkinson, E. A., Fowler, M. S., Ewins, D., et al. (2011). Motor asymmetry and estimation of body-scaled aperture width in Parkinson’s disease. Neuropsychologia, 49, 3002–3010. doi:10.1016/j.neuropsychologia.2011.06.025.

    Article  PubMed  Google Scholar 

  • Sweller, J. (2011). Cognitive Load Theory. In J. P. Mestre & B. H. Ross (Eds.), The pscyhology of learning and motivation (pp. 37–76). San Diego: Elsevier.

    Google Scholar 

  • Teachman, B. A., & Gordon, T. L. (2009). Age differences in anxious responding: older and calmer, unless the trigger is physical. Psychology and Aging, 24, 703–714.

    Article  PubMed  Google Scholar 

  • Teachman, B. A., Smith-Janik, S. B., & Saporito, J. (2007). Information processing biases and panic disorder: relationships among cognitive and symptom measures. Behaviour Research and Therapy, 45, 1791–1811.

    Article  PubMed Central  PubMed  Google Scholar 

  • Temprado, J.-J., Zanone, P. G., Monno, A., & Laurent, M. (1999). Attentional load associated with performing and stabilizing preferred bimanual patterns. Journal of Experimental Psychology: Human Perception and Performance, 25, 1579–1594.

    Google Scholar 

  • Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T., & Baldassarre, G. (2013). Theories and computational models of affordance and mirror systems: an Integrative Review. Neuroscience and Biobehavioral Reviews, 37, 421–491.

    Google Scholar 

  • Warren, W. H. (1984). Perceiving affordances: visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10, 683–703.

    PubMed  Google Scholar 

  • Weast, J. A., Shockley, K., & Riley, M. A. (2011). The influence of athletic experience and kinematic information on skill-relevant affordance perception. The Quarterly Journal of Experimental Psychology, 64, 689–706.

    Article  PubMed  Google Scholar 

  • Wilson, M. (2008). From processing efficiency to attentional control: a mechanistic account of the anxiety-performance relationship. International Review of Sport and Exercise Psychology, 1, 184–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Daviaux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daviaux, Y., Cremoux, S., Tallet, J. et al. An enhanced experimental procedure to rationalize on the impairment of perception of action capabilities. Psychological Research 80, 224–234 (2016). https://doi.org/10.1007/s00426-015-0653-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0653-1

Keywords

Navigation