Skip to main content
Log in

Motor imagery practice may compensate for the slowdown of sensorimotor processes induced by short-term upper-limb immobilization

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Recently, it has been demonstrated that sensorimotor representations are quickly updated following a brief period of limb non-use. The present study examined the potential of motor imagery practice (MIP) and investigated the role of motor imagery instructions (kinesthetic vs. visual imagery) to counteract the functional impairment induced by sensorimotor restriction. The participants were divided into four groups. Three groups wore a splint on their left hand for 24 h. Prior to the splint removal, two of the three groups performed 15 min of MIP, with kinesthetic or visual modalities (KinMIP and VisMIP groups, respectively). The third group did not practice motor imagery (NoMIP group). Immediately after the splint removal, the participants were assessed using a hand laterality task known for evaluating sensorimotor processes. A fourth group served as the control (i.e., without immobilization and MIP). The main results showed slower left-hand response times for the immobilized NoMIP group compared with the controls. Importantly, faster response times for the left-hand stimuli appeared for the KinMIP groups only compared with the NoMIP group. No difference between the four groups was observed for the right-hand stimuli. Overall, these results highlighted the somatotopic effect of limb non-use on the efficiency of sensorimotor processes. Importantly, the slowdown of the sensorimotor processes induced by 24 h of sensorimotor deprivation may be counteracted by a kinesthetic MIP, whereas no beneficial effect appeared with visual imagery. We discuss the importance of imagery modalities for sensorimotor reactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that visual imagery is less motor than kinesthetic imagery.

References

  • Allami, L., Paulignan, Y., Brovelli, A., & Boussaoud, D. (2008). Visuo-motor learning with combination of different rates of motor imagery and physical practice. Experimental Brain Research, 184, 105–113. doi:10.1007/s00221-007-1086-x.

    Article  PubMed  Google Scholar 

  • Avanzino, L., Bassolino, M., Pozzo, T., & Bove, M. (2011). Use-dependent hemispheric balance. Journal of Neuroscience, 31, 3423–3428. doi:10.1523/JNEUROSCI.4893-10.2011.

    Article  PubMed  Google Scholar 

  • Avanzino, L., Pelosin, E., Abbruzzese, G., Bassolino, M., Pozzo, T., & Bove, M. (2013). Shaping motor cortex plasticity through proprioception. Cerebral Cortex,. doi:10.1093/cercor/bht139.

    PubMed  Google Scholar 

  • Bassolino, M., Bove, M., Jacono, M., Fadiga, L., & Pozzo, T. (2012). Functional effect of short-term immobilization: kinematic changes and recovery on reaching-to-grasp. Neuroscience, 215, 127–134. doi:10.1016/j.neuroscience.2012.04.019.

    Article  PubMed  Google Scholar 

  • Bassolino, M., Campanella, M., Bove, M., Pozzo, T., & Fadiga, L. (2013). Training the motor cortex by observing the actions of others during immobilization. Cerebral Cortex,. doi:10.1093/cercor/bht190.

    PubMed Central  Google Scholar 

  • Braun, S., Kleynen, M., van Heel, T., Kruithof, N., Wade, D., & Beurskens, A. (2013). The effects of mental practice in neurological rehabilitation; a systematic review and meta-analysis. Frontiers in Human Neuroscience,. doi:10.3389/fnhum.2013.00390.

    Google Scholar 

  • Cerritelli, B., Maruff, P., Wilson, P., & Currie, J. (2000). The effect of an external load on the force and timing components of mentally represented actions. Behavioral Brain Research, 108, 91–96. doi:10.1016/S0166-4328(99)00138-2.

    Article  Google Scholar 

  • Conson, M., Mazzarella, E., Frolli, A., Esposito, D., Marino, N., Trojano, L., Massagli, A., Gison, G., Aprea, N., & Grossi, D. (2013). Motor imagery in asperger syndrome: testing action simulation by the hand laterality task. PLoS One, 8. doi:10.1371/journal.pone.0070734.

  • Crews, R. T., & Kamen, G. (2006). Motor-evoked potentials following imagery and limb disuse. The International Journal of Neuroscience, 116, 639–651. doi:10.1080/00207450600592198.

    Article  PubMed  Google Scholar 

  • Curtze, C., Otten, B., & Postema, K. (2010). Effects of lower limb amputation on the mental rotation of feet. Experimental Brain Research, 201, 527–534. doi:10.1007/s00221-009-2067-z.

    Article  PubMed Central  PubMed  Google Scholar 

  • de Vignemont, F., Zalla, T., Posada, A., Louvegnez, A., Koenig, O., Georgieff, N., et al. (2006). Mental rotation in schizophrenia. Consciousness and Cognition, 15, 295–309. doi:10.1016/j.concog.2005.08.001.

    Article  PubMed  Google Scholar 

  • de Vries, S., & Mulder, T. (2007). Motor imagery and stroke rehabilitation: a critical discussion. Journal of Rehabilitation Medicine, 39, 5–13. doi:10.2340/16501977-0020.

    Article  PubMed  Google Scholar 

  • Decety, J., & Grèzes, J. (1999). Neural mechanisms subserving the percep- tion of human actions. Trends in Cognitive Sciences, 3, 172–178. doi:10.1016/S1364-6613(99)01312-1.

    Article  PubMed  Google Scholar 

  • Decety, J., & Jeannerod, M. (1995). Mentally simulated movements in virtual reality: does Fitts’s law hold in motor imagery? Behavioral Brain Research, 72, 127–134. doi:10.1016/0166-4328(96)00141-6.

    Article  Google Scholar 

  • Dominey, P., Decety, J., Brousolle, E., Chazot, J., & Jeannerod, M. (1994). Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson’s patients. Neuropsychologia, 33, 727–741. doi:10.1016/0028-3932(95)00008-Q.

    Article  Google Scholar 

  • Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79, 481–492. doi:10.1037/0021-9010.79.4.481.

    Article  Google Scholar 

  • Dunsky, A., Dickstein, R., Marcovitz, E., Levy, S., & Deutsch, J. E. (2008). Home-based MI training for gait rehabilitation of people with chronic post-stroke hemiparesis. Archive of Physical Medicine and Rehabilitation, 89, 1580–1588. doi:10.1016/j.apmr.2007.12.039.

    Article  Google Scholar 

  • Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: a meta-analysis. Journal of Sport & Exercise Psychology, 5, 25–57.

    Google Scholar 

  • Féry, Y. A. (2003). Differentiating visual and kinesthetic imagery in mental practice. Canadian Journal of Experimental Psychology, 57, 1–10.

    Article  PubMed  Google Scholar 

  • Fiorio, M., Tinazzi, M., & Aglioti, S. M. (2006). Selective impairment of hand mental rotation in patients with focal hand dystonia. Brain, 129, 47–54. doi:10.1093/brain/awh630.

    Article  PubMed  Google Scholar 

  • Funk, M., & Brugger, P. (2008). Mental rotation of congenitally absent hands. Journal of the International Neuropsychological Society, 14, 81–89.

    Article  PubMed  Google Scholar 

  • Gentili, R., Han, C. E., Schweighofer, N., & Papaxanthis, C. (2010). Motor learning without doing: trial-by-trial improvement in motor performance during mental training. Journal of Neurophysiology, 104, 774–783. doi:10.1152/jn.00257.2010.

  • Gentilucci, M., Benuzzi, F., Bertolani, L., Daprati, E., & Gangitano, M. (2000). Recognising a hand by grasp. Cognitive Brain Research, 9, 125–135. doi:10.1016/S0926-6410(99)00049-X.

    Article  PubMed  Google Scholar 

  • Gentilucci, M., Daprati, E., & Gangitano, M. (1998). Right-handers and left-handers have different representations of their own hand. Cognitive Brain Research, 6, 185–192. doi:10.1016/S0926-6410(97)00034-7.

    Article  PubMed  Google Scholar 

  • Gerardin, E., Sirigu, A., Lehericy, S., Poline, J. B., Gaymard, B., Marsault, C., et al. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex, 10, 1093–1104. doi:10.1093/cercor/10.11.1093.

    Article  PubMed  Google Scholar 

  • Guillot, Di Rienzo, F., MacIntyre, T., Moran, A., & Collet, C. (2012). Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Frontiers in Human Neuroscience, 6, 247. doi:10.3389/fnhum.2012.00247.

  • Guillot, A., & Collet, C. (2005). Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Research, 50, 387–397. doi:10.1016/j.brainresrev.2005.09.004.

    Article  PubMed  Google Scholar 

  • Guillot, A., & Collet, C. (2008). Construction of the motor imagery integrative model in sport: a review and theoretical investigation of motor imagery use. International Review of Sport and Exercise Psychology, 1, 31–44. doi:10.1080/17509840701823139.

    Article  Google Scholar 

  • Guillot, A., Collet, C., & Dittmar, A. (2004). Relationship between visual vs. kinesthetic imagery, field dependence-independence and complex motor skills. Journal of Psychophysiology, 18, 190–199. doi:10.1027/0269-8803.18.4.190.

  • Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2009). Brain activity during visual versus kinesthetic imagery: an fMRI study. Human Brain Mapping, 30, 2157–2172. doi:10.1002/hbm.20658.

    Article  PubMed  Google Scholar 

  • Hanakawa, T., Dimyan, M. A., & Hallett, M. (2008). Motor planning, imagery, and execution in the distributed motor network: a time- course study with functional MRI. Cerebral Cortex, 18, 2775–2788. doi:10.1093/cercor/bhn036.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hardy, L., & Callow, N. (1999). Efficacy of external and internal visual imagery perspectives for the enhancement of performance on tasks in which form is important. Journal of Sport and Exercise Psychology, 21, 95–112.

    Google Scholar 

  • Huber, R., Ghilardi, M. F., Massimini, M., Ferrarelli, F., Riedner, B. A., Peterson, M. J., et al. (2006). Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nature Neuroscience, 9, 1169–1176. doi:10.1038/nn1758.

    Article  PubMed  Google Scholar 

  • Ionta, S., & Blanke, O. (2009). Differential influence of hands posture on mental rotation of hands and feet in left and right handers. Experimental Brain Research, 195, 207–217. doi:10.1007/s00221-009-1770-0.

  • Isaac, A., Marks, D. F., & Russell, D. G. (1986). An instrument for assessing imagery of movement: the Vividness of Movement Imagery Questionnaire (VMIQ). Journal of Mental Imagery, 10, 23–30.

    Google Scholar 

  • Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., & Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archive of Physical Medicine and Rehabilitation, 82, 1133–1141. doi:10.1053/apmr.2001.24286.

    Article  Google Scholar 

  • Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., & Doyon, J. (2003). Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage, 20, 1171–1180. doi:10.1016/S1053-8119(03)00369-0.

    Article  PubMed  Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 14, 429–439. doi:10.1006/nimg.2001.0832.

    Article  Google Scholar 

  • Jenkinson, P. M., Edelstyn, N. M. J., & Ellis, S. J. (2009). Imagining the impossible: motor representations in anosognosia for hemiplegia. Neuropsychologia, 47, 481–488. doi:10.1016/j.neuropsychologia.2008.10.004.

    Article  PubMed  Google Scholar 

  • Lacourse, M. G., Turner, J. A., Randolph-Orr, E., Schandler, S. L., & Cohen, M. J. (2004). Cerebral and cerebellar sensorimotor plasticity following motor imagery-based mental practice of a sequential movement. Journal of Rehabilitation Research and Development, 41, 505–524.

    Article  PubMed  Google Scholar 

  • Malouin, F., Jackson, P., & Richards, C.L. (2013). Towards the integration of mental practice in rehabilitation programs. A critical review. Frontiers in Human Neuroscience. doi:10.3389/fnhum.2013.00576.

  • Malouin, F., Richards, C. L., Durand, A., Descent, M., Poiré, D., Frémont, P., et al. (2009). Effects of practice, visual loss, limb amputation, and disuse on motor imagery vividness. Neurorehabilitation Neural Repair, 23, 449–463. doi:10.1177/1545968308328733.

    Article  PubMed  Google Scholar 

  • Malouin, F., Richards, C. L., Durand, A., & Doyon, J. (2008). Clinical assessment of motor imagery after stroke. Neurorehabilitation and Neural Repair, 22, 330–340. doi:10.1177/1545968307313499.

    Article  PubMed  Google Scholar 

  • Meugnot, A., Almecija, Y., & Toussaint, L. (2014). The embodied nature of motor imagery processes highlighted by short-term limb immobilization. Experimental Psychology, 61, 180–186. doi:10.1027/1618-3169/a000237.

  • Moisello, C., Bove, M., Huber, R., Abbruzzese, G., Battaglia, F., Tononi, G., et al. (2008). Short-term limb immobilization affects motor performance. Journal of Motor Behavior, 40, 165–176. doi:10.3200/JMBR.40.2.165-176.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mulder, T. (2007). Motor imagery and action observation: cognitive tools for rehabilitation. Journal of Neural Transmission, 114, 1265–1278. doi:10.1007/s00702-007-0763-z.

    Article  PubMed Central  PubMed  Google Scholar 

  • Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Research Review, 60, 306–326. doi:10.1016/j.brainresrev.2008.12.024.

    Article  Google Scholar 

  • Ni Choisdealbha, A., Brady, N., & Maguinness, C. (2011). Differing roles for the dominant and non-dominant hands in the hand laterality task. Experimental Brain Research, 211, 73–85. doi:10.1007/s00221-011-2652-9.

    Article  PubMed  Google Scholar 

  • Nico, D., Daprati, E., Rigal, F., Parsons, L. M., & Sirigu, A. (2004). Left and right hand recognition in upper limb amputees. Brain, 127, 120–132. doi:10.1093/brain/awh006.

    Article  PubMed  Google Scholar 

  • Papaxanthis, C., Pozzo, T., Skoura, X., & Schiappati, M. (2002). Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task. Behavioral Brain Research, 134, 209–215. doi:10.1016/S0166-4328(02)00030-X.

    Article  Google Scholar 

  • Parsons, L. M. (1987). Imagined spatial transformations of one’s body. Cognitive Psychology, 19, 178–241. doi:10.1016/0010-0285(87)90011-9.

    Article  PubMed  Google Scholar 

  • Parsons, L. M. (1994). Temporal and kinematic properties of motor behavioral reflected in mentally simulated action. Journal of Experimental Psychology: Human Perception and Performance, 20, 709–730. doi:10.1037/0096-1523.20.4.709.

    PubMed  Google Scholar 

  • Pascual-Leone, A., Nguyet, D., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A., & Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74, 1037–1045.

    PubMed  Google Scholar 

  • Petit, L. S., Pegna, A. J., Mayer, E., & Hauert, C. A. (2003). Representation of anatomical constraints in motor imagery: mental rotation of a body segment. Brain and Cognition, 51, 95–101. doi:10.1016/S0278-2626(02)00526-2.

    Article  PubMed  Google Scholar 

  • Ruby, P., & Decety, J. (2003). What you believe versus what you think they believe: a neuroimaging study of conceptual perspective-taking. European Journal of Neuroscience, 17, 2475–2480. doi:10.1046/j.1460-9568.2003.02673.x.

    Article  PubMed  Google Scholar 

  • Silva, S., Loubinoux, I., Olivier, M., Bataille, B., Fourcade, O., Samii, K., et al. (2011). Impaired visual hand recognition in Preoperative patients during Brachial Plexus. Anesthesiology, 1, 126–134. doi:10.1097/ALM.0b013e31820164f1.

    Article  Google Scholar 

  • Sirigu, A., Daprati, E., Pradat-Diehl, P., Franck, N., & Jeannerod, M. (1999). Perception of self-generated movement following left parietal lesion. Brain, 122, 1867–1874. doi:10.1093/brain/122.10.1867.

    Article  PubMed  Google Scholar 

  • Sirigu, A., Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B., & Agid, Y. (1996). The mental representation of hand movements after parietal cortex damage. Science, 273, 1564–1568.

    Article  PubMed  Google Scholar 

  • Solodkin, A., Hlustik, P., Chen, E. E., & Small, S. L. (2004). Fine modulation in network activation during motor execution and motor imagery. Cerebral Cortex, 14, 1246–1255. doi:10.1093/cercor/bhh086.

    Article  PubMed  Google Scholar 

  • Stenekes, M. W., Geertzen, J. H., Nicolai, J. P., De Jong, B. M., & Mulder, T. (2009). Effects of motor imagery on hand function during immobilization after flexor tendon repair. Archive of Physical Medicine and Rehabilitation, 90, 553–559. doi:10.1016/j.apmr.2008.10.029.

    Article  Google Scholar 

  • Stinear, C. M., Byblow, W. D., Steyvers, M., Levin, O., & Swinnen, S. P. (2006). Kinesthetic, but not visual, motor imagery modulates cortico-motor excitability. Experimental Brain Research, 168, 157–164. doi:10.1007/s00221-005-0078-y.

    Article  PubMed  Google Scholar 

  • ter Horst, A. C., Cole, J., van Lier, R., & Steenbergen, B. (2012). The effect of chronic deafferentation on mental imagery: a case study. PLoS One, 7, e42742. doi:10.1371/jounal.pone.0042742.

    Article  PubMed Central  PubMed  Google Scholar 

  • Toussaint, L., & Blandin, Y. (2010). On the role of imagery modalities on motor learning. Journal of Sports Sciences, 28, 497–504. doi:10.1080/02640410903555855.

    Article  PubMed  Google Scholar 

  • Toussaint, L., & Meugnot, A. (2013). Short-term limb immobilization affects cognitive motor processes. Journal of Experimental Psychology Learning, Memory, and Cognition, 39, 623–632. doi:10.1037/a0028942.

    Article  PubMed  Google Scholar 

  • Wang, Y., & Morgan, W. P. (1992). The effects of imagery perspectives on the physiological responses to imagined exercise. Behavioral Brain Research, 52, 167–174. doi:10.1016/S0166-4328(05)80227-X.

    Article  Google Scholar 

  • White, A., & Hardy, L. (1995). Use of different imagery perspectives on the learning and performance of different motor skills. British Journal of Psychology, 86, 191–216.

    Article  Google Scholar 

  • Wilson, P. H., Maruff, P., Butson, M., Williams, J., Lum, J., & Thomas, P. R. (2004). Internal representation of movement in children with developmental coordination disorder: a mental rotation task. Developmental Medicine and Child Neurology, 46, 754–759. doi:10.1017/S001216220400129X.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, 729–732. doi:10.1016/S0960-9822(01)00432-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucette Toussaint.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meugnot, A., Agbangla, N.F., Almecija, Y. et al. Motor imagery practice may compensate for the slowdown of sensorimotor processes induced by short-term upper-limb immobilization. Psychological Research 79, 489–499 (2015). https://doi.org/10.1007/s00426-014-0577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0577-1

Keywords

Navigation