Skip to main content
Log in

Mental representations derived from spatial descriptions: the influence of orientation specificity and visuospatial abilities

  • Original Paper
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the orientation dependence effect and the role of visuospatial abilities in mental representations derived from spatial descriptions. The analysis focused on how the orientation effect and the involvement of visuospatial abilities change when survey and route descriptions are used, and the initial and main orientation of an imaginary tour. In Experiment 1, 48 participants listened to survey or route descriptions in which information was mainly north-oriented (matching the initial heading and main direction of travel expressed in the description). In Experiment 2, 40 participants listened to route descriptions in which the initial orientation (north-oriented) was mismatched with the main direction of travel (east-oriented). Participants performed pointing task while facing north vs south (Exp. 1 and 2), and while facing east vs west (Exp. 2), as well as a map drawing task and several visuospatial measures. In both experiments, the results showed that pointing was easier while facing north than while facing south, and map drawings were arranged with a north-up orientation (with no difference between survey and route descriptions). In Experiment 2, pointing while facing east was easier than in the other pointing conditions. The results obtained with the visuospatial tasks showed that perspective-taking (PT) skill was the main predictor of the ability to imagine positions misaligned with the direction expressed in the descriptions (i.e. pointing while facing south in Experiment 1; pointing while facing north, south or west in Experiment 2). Overall, these findings indicate that mental representations derived from spatial descriptions are specifically oriented and their orientation is influenced by the main direction of travel and by the initial orientation. These mental representations, and the adoption of counter-aligned imaginary orientations, demand visuospatial skills and PT ability in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Males are more accurate in pointing tasks than females (as shown by previous studies; Fields & Shelton, 2006; Pazzaglia & De Beni, 2006), so gender was considered as a factor in the analysis of variance and regression models.

  2. In a preliminary analysis for Experiment 1, the Leg factor (Leg 1 vs. 2 vs. 3) was included in the ANOVA to check for any differences in pointing performance as a function of the leg involved; no significant effects were found, so this factor was not included in the final analyses.

  3. Experiment 1. Two separate stepwise regression models were run on pointing while facing north and south for all visuospatial measures; both models were significant [F (2, 45) = 12.04 p ≤ .001 and F (3, 47) = 21.09 p ≤ .001, respectively], explaining 35 % and 59 % of the variance, respectively. In the first stepwise regression (pointing while facing north), the variables entered were MRT (β = −.40; t = −3.28 p ≤ .01) and sense of direction (β = −.36, t = −2.95, p ≤ .01); in the second stepwise regression (pointing while facing south), the variables entered were OPT (β = .43; t = 3.65, p ≤ .001), sense of direction (β = −.28, t = −2.68, p ≤ .01) and MRT (β = −.29, t = −2.63, p ≤ .01).

  4. Experiment 2. The final 4 × 2 analysis of variance was based on the degrees of error without the segment going from the entrance to the ticket booth in Leg 4. When the same analysis was run including both the segments of Leg 4, the results showed the main effect of orientation F (3, 114) = 10.63, p ≤ .01 η 2 p  = .28; post hoc comparisons confirmed that pointing while facing north (M = 32.63, SD 28.34) was easier than pointing while facing south (M = 41.68, SD 34.11) (as reported in the manuscript); on the other hand, pointing while facing east (M = 52.34, SD 17.45) coincided with a worse performance than pointing while facing west (M = 27.15, SD 23.20, p < .01) or north (p = .01) due to the greater error for the segment going from the entrance to the ticket booth.

  5. Experiment 2. Two separate stepwise regression models were run on pointing while facing north and south for all visuospatial measures, and both models were significant [F (2, 39) = 12.53, p ≤ .001 and F (2, 39) = 14.11, p ≤ .001, respectively], explaining 40 and 43 % of the variance, respectively. In both models, the variables entered were the OPT [pointing while facing north: (β = .40), t = 2.89, p ≤ .01; pointing while facing south: (β = .42), t = 3.16, p ≤ .01], and the SIT [pointing while facing north: (β = −.37), t = −2.66, p = .01; pointing while facing south: (β = −.37), t = −2.72, p = .01]. The two stepwise regression models run on pointing while facing east and west generated significant results only for pointing while facing west, F (1, 39) = 13.05 p ≤ .01, explaining 27 % of the variance; the only variable entered in the model was the OPT [(β = .51), t = 3.61, p ≤ .001].

References

  • Allen, G. L., Kirasic, K. C., Dobson, S. H., Long, R. G., & Beck, S. (1996). Predicting environmental learning from spatial abilities: an indirect route. Intelligence, 22, 327–355. doi:10.1016/S0160-2896(96)90026-4.

    Article  Google Scholar 

  • Baldwin, C. L., & Reagan, I. (2009). Individual differences in route-learning strategy and associated working memory resources. Human Factors, 51, 368–377. doi:10.1177/0018720809338187.

    Article  PubMed  Google Scholar 

  • Bosco, A., Filomena, S., Sardone, L., Scalisi, T. G., & Longoni, A. M. (1996). Spatial models derived from verbal descriptions of fictitious environments: the influence of study time and the individual differences in visuo-spatial ability. Psychologische Beiträge, 38, 451–464.

    Google Scholar 

  • Brunye, T. T., & Taylor, H. A. (2008). Extended experience benefits spatial mental model development with route but not survey descriptions. Acta Psychologica, 127, 340–354. doi:10.1016/j.actpsy.2007.07.002.

    Article  PubMed  Google Scholar 

  • Cornoldi, C., Rizzo, A., & Pra Baldi, A. (1991). Prove avanzate MT di comprensione della lettura [Advanced MT reading comprehension task]. Florence: Organizzazioni Speciali.

    Google Scholar 

  • Corsi, P. M. (1972). Human memory and the medial temporal region of the brain [Doctoral dissertation]. Montreal: McGill University.

    Google Scholar 

  • Fields, A. W., & Shelton, A. L. (2006). Individual skill differences and large-scale environmental learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32, 506–515. doi:10.1037/0278-7393.32.3.506.

    Article  PubMed  Google Scholar 

  • Frankenstein, J., Mohler, B. J., Bülthoff, H. H., & Meilinger, T. (2012). Is the map in our head oriented north? Psychological Science, 23, 120–125. doi:10.1177/0956797611429467.

    Article  PubMed  Google Scholar 

  • Gagnon, S. A., Brunyé, T. T., Gardony, A., Noordzij, M. L., Mahoney, C. R., & Taylor, H. A. (2013). Stepping into a map: initial heading direction influences spatial memory flexibility. Cognitive Science,. doi:10.1111/cogs.12055.

    PubMed  Google Scholar 

  • Gyselinck, V., Cornoldi, C., Dubois, V., De Beni, R., & Ehrlich, M. F. (2002). Visuo-spatial memory and phonological loop in learning from multimedia. Applied Cognitive Psychology, 16, 665–685. doi:10.1002/acp.823.

    Article  Google Scholar 

  • Gyselinck, V., & Meneghetti, C. (2011). The role of spatial working memory in understanding verbal descriptions: a window onto the interaction between verbal and spatial processing. In A. Vandienrendonck & A. Szmalec (Eds.), Spatial Working Memory (pp. 159–180). Psychology Press, Portfolio.

  • Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial ability at different scales: individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34, 151–176. doi:10.1016/j.intell.2005.09.005.

    Article  Google Scholar 

  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32, 175–191. doi:10.1016/j.intell.2003.12.001.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models: towards a cognitive science of language, inference and consciousness. Cambridge: Harvard University Press.

    Google Scholar 

  • Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object-manipulation spatial ability and spatial orientation ability. Memory and Cognition, 29, 745–756. doi:10.3758/BF03200477.

    Article  PubMed  Google Scholar 

  • Lawton, C. A. (1996). Strategies for indoor wayfinding: the role of orientation. Journal of Environmental Psychology, 16, 137–145. doi:10.1006/jevp.1996.0011.

    Article  Google Scholar 

  • Logie, R. H. (1995). Visuo-spatial working memory. UK: Lawrence Brlbaum Associates Ltd.

    Google Scholar 

  • Meneghetti, C., Gyselinck, V., Pazzaglia, F., & Beni, De. (2009). Individual differences in spatial text processing: high spatial ability can compensate for spatial working memory interference. Learning and Individual Differences, 19, 577–589. doi:10.1016/j.lindif.2009.07.007.

    Article  Google Scholar 

  • Meneghetti, C., De Beni, R., Gyselinck, V., & Pazzaglia, F. (2011a). Working memory involvement in spatial text processing: what advantages are gained from extended learning and visuo-spatial strategies? British Journal of Psychology, 102, 499–518. doi:10.1111/j.2044-8295.2010.02007.x.

    Article  PubMed  Google Scholar 

  • Meneghetti, C., Pazzaglia, F., & De Beni, R. (2011b). Spatial mental representations derived from survey and route descriptions: when individuals prefer extrinsic frame of reference. Learning and Individual Differences, 21, 150–157. doi:10.1016/j.lindif.2010.12.003.

    Article  Google Scholar 

  • Meneghetti, C., Ronconi, L., Pazzaglia, F., & De Beni, R. (2013). Spatial mental representation derived from spatial descriptions: the predicting and mediating role of spatial preferences, abilities and strategies. British Journal of Psychology. doi:10.1111/bjop.12038.

  • Montello, D. R., Waller, D., Hegarty, M., & Richardson, A. E. (2004). Spatial memory of real environments, virtual environments, and maps. In G. Allen (Ed.), Human spatial memory: remembering where (pp. 251–285). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Morrow, D. G., Stine-Morrow, E. A. L., Leirer, V. O., Andrassy, J. M., & Kahn, J. (1997). The role of reader age and focus of attention in creating situation models from narratives. Journal of Gerontology: Psychological Sciences, 52, 73–80. doi:10.1093/geronb/52B.2.P73.

    Article  Google Scholar 

  • Nori, R., & Giusberti, F. (2003). Cognitive styles: errors in directional judgments. Perception, 32, 307–320. doi:10.1068/p3380.

    Article  PubMed  Google Scholar 

  • Pazzaglia, F. (2008). Text and picture integration in comprehending and memorizing spatial descriptions. In J. F. Rouet & R. K. Lowe (Eds.), Understanding multimedia documents (pp. 43–59). NYC, US: Springer.

    Chapter  Google Scholar 

  • Pazzaglia, F., & Cornoldi, C. (1999). The role of distinct components of visuo-spatial working memory in the processing of texts. Memory, 7, 19–41. doi:10.1080/741943715.

    Article  PubMed  Google Scholar 

  • Pazzaglia, F., Cornoldi, C., & De Beni, R. (2000). Differenze individuali nella rappresentazione dello spazio: presentazione di un questionario autovalutativo [Individual differences in representation of space: presentation of a questionnaire]. Giornale Italiano di Psicologia, 3, 627–650. doi:10.1421/310.

    Google Scholar 

  • Pazzaglia, F., & De Beni, R. (2001). Strategies of processing spatial information in survey and landmark-centred individuals. European Journal of Cognitive Psychology, 13, 493–508. doi:10.1080/09541440125778.

    Article  Google Scholar 

  • Pazzaglia, F., & De Beni, R. (2006). Are people with high and low mental rotation abilities differently susceptible to the alignment effect? Perception, 35, 369–383. doi:10.1068/p5465.

    Article  PubMed  Google Scholar 

  • Pazzaglia, F., Gyselinck, V., Cornoldi, C., & De Beni, R. (2012). Individual differences in spatial text processing. In V. Gyselinck & F. Pazzaglia (Eds.), From mental imagery to spatial cognition and language: essays in honor of Michel Denis (pp. 127–161). Hove: Psychology Press.

    Google Scholar 

  • Pazzaglia, F., & Meneghetti, C. (2012). Spatial text processing in relation to spatial abilities and spatial styles. Journal of Cognitive Psychology, 24, 972–980. doi:10.1080/20445911.2012.725716.

    Article  Google Scholar 

  • Perrig, W., & Kintsch, W. (1985). Propositional and situational representations of text. Journal of Memory and Language, 24, 503–518. doi:10.1016/0749-596X(85)90042-7.

    Article  Google Scholar 

  • Presson, C. C., DeLange, N., & Hazelrigg, M. D. (1987). Orientation specificity in kinesthetic spatial learning: the role of multiple orientations. Memory & Cognition, 15, 225–229. doi:10.3758/BF03197720.

    Article  Google Scholar 

  • Presson, C. C., DeLange, N., & Hazelrigg, M. D. (1989). Orientation specificity in spatial memory: what makes a path different from a map of the path? Journal of Experimental Psychology. Learning, Memory, and Cognition, 15, 887–897. doi:10.1037/0278-7393.15.5.887.

    Article  PubMed  Google Scholar 

  • Presson, C. C., & Hazelrigg, M. D. (1984). Building spatial representations through primary and secondary learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10, 716–722. doi:10.1037/0278-7393.10.4.716.

    Article  PubMed  Google Scholar 

  • Richardson, A. E., Montello, D., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27, 741–750. doi:10.3758/BF03211566.

    Article  Google Scholar 

  • Rinck, M., Hahnel, A., Bower, G. H., & Glowalla, U. (1997). The metrics of spatial situation models. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32, 506–515. doi:10.1037/0278-7393.23.3.622.

    Google Scholar 

  • Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural correlates of individual differences in spatial learning strategies. Neuropsychology, 18, 442–449. doi:10.1037/0894-4105.18.3.442.

    Article  PubMed  Google Scholar 

  • Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310. doi:10.1006/cogp.2001.0758.

    Article  PubMed  Google Scholar 

  • Shelton, A. L., & McNamara, T. P. (2004). Orientation and perspective dependence in route and survey learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30, 158–170. doi:10.1037/0278-7393.30.1.158.

    Article  PubMed  Google Scholar 

  • Sluzenski, J., Meneghetti, C., & McNamara, T. P. (2011). Spatial influence of environmental axes in a baseball field. Spatial Cognition & Computation, 11, 205–225. doi:10.1080/13875868.2010.542262.

    Article  Google Scholar 

  • Taylor, H. A., & Tversky, B. (1992). Spatial mental models derived from survey and route descriptions. Journal of Memory and Language, 31, 261–292. doi:10.1016/0749-596X(92)90014-O.

    Article  Google Scholar 

  • Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotation, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604. doi:10.2466/pms.1978.47.2.599.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1981). Wechsler adult intelligence scale (rev. ed.). New York: Psychological Corporation.

    Google Scholar 

  • Wildbur, D. J., & Wilson, P. N. (2008). Influences on the first-perspective alignment effect from text route descriptions. The Quarterly Journal of Experimental Psychology, 61, 763–783. doi:10.1080/17470210701303224.

    Article  PubMed  Google Scholar 

  • Wilson, P. N., Tlauka, M., & Wildbur, D. (1999). Orientation specificity occurs in both small- and large-scale imagined routes presented as verbal descriptions. Journal of Experimental Psychology. Learning, Memory, and Cognition, 25, 664–679. doi:10.1037/0278-7393.25.3.664.

    Article  Google Scholar 

  • Wilson, P. N., & Wildbur, D. J. (2004). First-perspective alignment effects in a computer-simulated environment. British Journal of Psychology, 95, 197–217. doi:10.1348/000712604773952421.

    Article  PubMed  Google Scholar 

  • Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14, 138–146. doi:10.1016/j.tics.2010.01.001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Meneghetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meneghetti, C., Pazzaglia, F. & De Beni, R. Mental representations derived from spatial descriptions: the influence of orientation specificity and visuospatial abilities. Psychological Research 79, 289–307 (2015). https://doi.org/10.1007/s00426-014-0560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0560-x

Keywords

Navigation