Skip to main content
Log in

Relational framework improves transitive inference across age groups

  • Original Article
  • Published:
Psychological Research PRPF Aims and scope Submit manuscript

Abstract

Transitive inference is a complex task, conducive to the use of multiple strategies. We investigated whether transitive inference accuracy can be improved by biasing strategy choice towards a proposition-based approach that relies on the extraction of relations among stimuli. We biased strategy choice by using familiar stimuli with known relations that tap prior knowledge. Semantic information led to increased accuracy for younger and older adults, and increased awareness of stimulus relations. Increased age was associated with reduced awareness. Awareness accounted for the variability in performance accuracy to a greater extent than age, as aware older and younger adults showed similar accuracies on all conditions. The current work indicates that age differences in performance can be minimized by providing semantically meaningful stimuli that bias participants to use a relational proposition-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acuna, B. D., Eliassen, J. C., Donoghue, J. P., & Sanes, J. N. (2002). Frontal and parietal lobe activation during transitive inference in humans. Cerebral Cortex (New York), 12, 1312–1321. doi:10.1093/cercor/12.12.1312.

    Article  Google Scholar 

  • Castel, A. D. (2005). Memory for grocery prices in younger and older adults: The role of schematic support. Psychology and Aging, 20, 718–721. doi:10.1037/0882-7974.20.4.718.

    Article  PubMed  Google Scholar 

  • Driscoll, I., Hamilton, D. A., Petropoulos, H., Yeo, R. A., Brooks, W. M., Baumgartner, R. N., et al. (2003). The aging hippocampus: Cognitive, biochemical and structural findings. Cerebral Cortex (New York), 13, 1344–1351. doi:10.1093/cercor/bhg081.

    Article  Google Scholar 

  • Driscoll, I., & Sutherland, R. J. (2005). The aging hippocampus: Navigating between rat and human experiments. Reviews in the Neurosciences, 16, 87–121.

    PubMed  Google Scholar 

  • Dusek, J. A., & Eichenbaum, H. (1997). The hippocampus and memory for orderly stimulus relations. Proceedings of the National Academy of Sciences of the United States of America, 94, 7109–7114. doi:10.1073/pnas.94.13.7109.

    Article  PubMed  Google Scholar 

  • Fersen, L., Wynne, C. D. L., Delius, J. D., & Staddon, J. E. R. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17, 334–341. doi:10.1037/0097-7403.17.3.334.

    Article  Google Scholar 

  • Frank, M. J., O’Reilly, R. C., & Curran, T. (2006). When memory fails, intuition reigns: Midazolam enhances implicit inference in humans. Psychological Science, 17, 700–707. doi:10.1111/j.1467-9280.2006.01769.x.

    Article  PubMed  Google Scholar 

  • Frank, M. J., O’Reilly, R. C., & Curran, T. (2008). Midazolam, hippocampal function, and transitive inference: Reply to Greene. Behavioral and Brain Functions, 4, 5. doi:10.1186/1744-9081-4-5.

    Article  PubMed  Google Scholar 

  • Frank, M. J., Rudy, J. W., Levy, W. B., & O’Reilly, R. C. (2005). When logic fails: Implicit transitive inference in humans. Memory & Cognition, 33, 742–750.

    Google Scholar 

  • Frank, M. J., Rudy, J. W., & O’Reilly, R. C. (2003). Transitivity, flexibility, conjunctive representations and the hippocampus. II. A computational analysis. Hippocampus, 13, 341–354. doi:10.1002/hipo.10084.

    Article  PubMed  Google Scholar 

  • Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science, 306, 1940–1943. doi:10.1126/science.1102941.

    Article  PubMed  Google Scholar 

  • Goodwin, G. P., & Johnson-Laird, P. N. (2005). Reasoning about relations. Psychological Review, 112, 468–495. doi:10.1037/0033-295X.112.2.468.

    Article  PubMed  Google Scholar 

  • Grady, C. L., & Craik, F. I. M. (2000). Changes in memory processing with age. Current Opinion in Neurobiology, 10, 224–231. doi:10.1016/S0959-4388(00)00073-8.

    Article  PubMed  Google Scholar 

  • Grady, C. L., McIntosh, A. R., & Craik, F. I. M. (2003). Age-related differences in the functional connectivity of the hippocampus during memory encoding. Hippocampus, 13, 572–586. doi:10.1002/hipo.10114.

    Article  PubMed  Google Scholar 

  • Greene, A. J., Gross, W. L., Elsinger, C., & Rao, S. M. (2006). An fMRI analysis of the human hippocampus: Inference, context and task awareness. Journal of Cognitive Neuroscience, 18, 1156–1173. doi:10.1162/jocn.2006.18.7.1156.

    Article  PubMed  Google Scholar 

  • Greene, A. J., Spellman, B. A., Dusek, J. A., Eichenbuam, H. B., & Levy, W. B. (2001). Relational learning with and without awareness: Transitive inference using nonverbal stimuli in humans. Memory & Cognition, 29, 893–902.

    Google Scholar 

  • Hannon, B., & Craik, F. I. M. (2001). Encoding specificity revisited: The role of semantics. Canadian Journal of Experimental Psychology, 55, 231–243. doi:10.1037/h0087369.

    PubMed  Google Scholar 

  • Heckers, S., Zalesak, M., Weiss, A. P., Ditman, T., & Titone, D. (2004). Hippocampal activation during transitive inference in humans. Hippocampus, 14, 153–162. doi:10.1002/hipo.10189.

    Article  PubMed  Google Scholar 

  • Howard, D. V. (1983). The effects of aging and degree of association on the semantic priming of lexical decisions. Experimental Aging Research, 9, 145–151.

    PubMed  Google Scholar 

  • Libben, M., & Titone, D. (2008). The role of awareness and working memory in human transitive inference. Behavioural Processes, 77, 43–54. doi:10.1016/j.beproc.2007.06.006.

    Article  PubMed  Google Scholar 

  • Martin, N., & Alsop, B. (2004). Transitive inference and awareness in humans. Behavioural Processes, 67, 157–165. doi:10.1016/j.beproc.2004.03.017.

    Article  PubMed  Google Scholar 

  • McDonald, R. J., & White, N. M. (1995). Hippocampal and nonhippocampal contributions to place learning in rats. Behavioral Neuroscience, 109, 579–593. doi:10.1037/0735-7044.109.4.579.

    Article  PubMed  Google Scholar 

  • Moses, S. N., Villate, C., Binns, M. A., Davidson, P. S. R., & Ryan, J. D. (2008). Cognitive integrity predicts transitive inference performance bias and success. Neuropsychologia, 46, 1314–1325. doi:10.1016/j.neuropsychologia.2007.12.009.

    Article  PubMed  Google Scholar 

  • Moses, S. N., Villate, C., & Ryan, J. D. (2006). An investigation of learning strategy underlying transitive inference performance in humans. Neuropsychologia, 44, 1370–1387. doi:10.1016/j.neuropsychologia.2006.01.004.

    Article  PubMed  Google Scholar 

  • Nagode, J. C., & Pardo, J. V. (2002). Human hippocampal activation during transitive inference. Learning & Memory, 13, 939–944.

    Google Scholar 

  • Ryan, J. D., Leung, G., Turk-Browne, N. B., & Hasher, L. (2007). Assessment of age-related changes in inhibition and binding using eye movement monitoring. Psychology and Aging, 22, 239–250. doi:10.1037/0882-7974.22.2.239.

    Article  PubMed  Google Scholar 

  • Ryan, J. D., Moses, S. N., & Villate, C. V. (2009). Impaired relational organization of propositions, but intact transitive inference, in aging: Implications for understanding underlying neural integrity. Neuropsychologia, 47, 338–353.

    Article  PubMed  Google Scholar 

  • Smith, C., & Squire, L. R. (2005). Declarative memory, awareness, and transitive inference. The Journal of Neuroscience, 25, 10138–10146. doi:10.1523/JNEUROSCI.2731-05.2005.

    Article  PubMed  Google Scholar 

  • Troyer, A. K., Hafliger, A., Cadieux, M. J., & Craik, F. I. M. (2006). Name and face learning in older adults: Effects of level of processing, self-generation, and intention to learn. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 61, 67–74.

    Google Scholar 

  • Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., et al. (2007). Schemas and memory consolidation. Science, 316, 76–82. doi:10.1126/science.1135935.

    Article  PubMed  Google Scholar 

  • Van Elzakker, M., O’Reilly, R. C., & Rudy, J. W. (2003). Transitivity, flexibility, conjunctive representations and the hippocampus. I. An empirical analysis. Hippocampus, 13, 334–340. doi:10.1002/hipo.10083.

    Article  PubMed  Google Scholar 

  • Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boon, K. B., Mishkin, F. S., de Menezes Santos, M., et al. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119–125. doi:10.1111/1467-9280.00118.

    Article  Google Scholar 

  • Winocur, G. (1992). Conditional learning in aged rats: evidence of hippocampal and prefrontal cortex impairment. Neurobiology of Aging, 13, 131–135. doi:10.1016/0197-4580(92)90020-X.

    Article  PubMed  Google Scholar 

  • Wynne, C. D. L. (1995). Reinforcement accounts for transitive inference performance. Animal Learning & Behavior, 23, 207–217.

    Google Scholar 

  • Wynne, C. D. L. (1997). Pigeon transitive inference: Tests of simple accounts of a complex performance. Behavioural Processes, 39, 95–112. doi:10.1016/S0376-6357(96)00048-4.

    Article  Google Scholar 

  • Wynne, C. D. L. (1998). A minimal model of transitive inference. In C. D. L. Wynne & J. E. R. Staddon (Eds.), Models of action: Mechanisms for adaptive behavior (pp. 267–307). Hillsdale, NJ: Lawrence Earlbaum Associates.

    Google Scholar 

  • Wynne, C. D. L., von Ferson, L., & Staddon, J. E. R. (1992). Pigeons’ inference are transitive and the outcome of elementary conditioning principles: A response. Journal of Experimental Psychology: Animal Behavior Processes, 18, 313–315. doi:10.1037/0097-7403.18.3.313.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Tanvi Sharan, Ella Pan and Christina Villate for technical assistance. This work was supported by the Canadian Institutes of Health Research and the Canada Research Chairs Program awarded to JDR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra N. Moses.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moses, S.N., Ostreicher, M.L. & Ryan, J.D. Relational framework improves transitive inference across age groups. Psychological Research 74, 207–218 (2010). https://doi.org/10.1007/s00426-009-0244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-009-0244-0

Keywords

Navigation