Skip to main content
Log in

Fixed versus dynamic orientations in environmental learning from ground-level and aerial perspectives

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Ground-level and aerial perspectives in virtual space provide simplified conditions for investigating differences between exploratory navigation and map reading in large-scale environmental learning. General similarities and differences in ground-level and aerial encoding have been identified, but little is known about the specific characteristics that differentiate them. One such characteristic is the need to process orientation; ground-level encoding (and navigation) typically requires dynamic orientations, whereas aerial encoding (and map reading) is typically conducted in a fixed orientation. The present study investigated how this factor affected spatial processing by comparing ground-level and aerial encoding to a hybrid condition: aerial-with-turns. Experiment 1 demonstrated that scene recognition was sensitive to both perspective (ground-level or aerial) and orientation (dynamic or fixed). Experiment 2 investigated brain activation during encoding, revealing regions that were preferentially activated perspective as in previous studies (Shelton and Gabrieli in J Neurosci 22:2711–2717, 2002), but also identifying regions that were preferentially activated as a function of the presence or absence of turns. Together, these results differentiated the behavioral and brain consequences attributable to changes in orientation from those attributable to other characteristics of ground-level and aerial perspectives, providing leverage on how orientation information is processed in everyday spatial learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. These paradigms have all used desktop virtual reality (VR) rather than immersive VR for several practical reasons. On-going investigations continue to assess the similarities among desktop VR, immersive VR, and real space, but there has been general support for enough similarity to warrant the use of both types of VR (Montello, Waller, Hegarty, & Richardson, 2004; Ruddle, Payne, & Jones, 1997). However, as with any laboratory study intended to bear on real-world conditions, these paradigms still require caution in overextending the conclusions that can be drawn.

  2. Table 3 of Shelton and Gabrieli (2002) lists 18 different clusters. However, in identifying bilateral ROIs, two of the right parietal clusters corresponded to a single left parietal cluster. The activation patterns in these two ROIs were identical in the original data, so they were combined for the present purposes.

References

  • Aguirre, G. K., & D’Esposito, M. (1999). Topographical disorientation: A synthesis and taxonomy. Brain, 122, 1613–1628.

    Article  PubMed  Google Scholar 

  • Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6, 823–829.

    Article  PubMed  Google Scholar 

  • Alivisatos, B., & Petrides, M. (1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35(2), 111–118.

    Article  PubMed  Google Scholar 

  • Barnes, J., Howard, R. J., Senior, C., Brammer, M., Bullmore, E. T., Simmons, A., et al. (2000). Cortical activity during rotational and linear transformations. Neuropsychologia, 38, 1148–1156.

    Article  PubMed  Google Scholar 

  • Bisiach E., Perani D., Vallar G., & Berti A. (1986). Unilateral neglect: Personal and extra-personal space. Neuropsychologia, 24,759–767.

    Article  PubMed  Google Scholar 

  • Bonda, E., Petrides, M., Frey, S., & Evans, A. (1995). Neural correlates of mental transformations of the body-in-space. PNAS, 92(24), 11180–11184.

    Article  PubMed  Google Scholar 

  • Burgess, N. (2002). The hippocampus, space, and viewpoints in episodic memory. Quarterly Journal of Experimental Psychology, 55A(4), 1057–1080.

    Google Scholar 

  • Burgess, N., Jeffery, K. J., & O’Keefe, J. (Eds.). (1999). The hippocampal and parietal foundations of spatial cognition. Oxford: Oxford University Press.

  • Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of life events. NeuroImage, 14, 439–453.

    Article  PubMed  Google Scholar 

  • Carpenter, P. A., Just, M. A., Keller, T. A., Eddy, W., & Thulborn, K. (1999). Graded functional activation in the visuospatial system with the amount of task demand. Journal of Cognitive Neuroscience, 11(1), 9–24.

    Article  PubMed  Google Scholar 

  • Chen, L. L., Lin, L. H., Green, E. J., Barnes, C. A., & McNaughton, B. L. (1994). Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Experimental Brain Research, 101, 8–23.

    Article  Google Scholar 

  • Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, D. J., Thompson, W. L., Anderson, A. K., et al. (1996). Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain, 119, 89–100.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments. Behavioral Research Methods, Instruments, and Computers, 25, 257–271.

    Google Scholar 

  • Cutmore, T. R. H., Hine, T. J., Maberly, K. J., Langford, N. M., & Hawgood, G. (2000). Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53, 223–249.

    Article  Google Scholar 

  • Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23, 209–226.

    Article  PubMed  Google Scholar 

  • Epstein, R., Graham, K. S., & Downing, P. E. (2003). Viewpoint-specific scene representations in human parahippocampal cortex. Neuron, 37(5), 865–876.

    Article  PubMed  Google Scholar 

  • Fields, A. W., & Shelton, A. L. (2006). Individual skill differences and large-scale environmental learning. Journal of Experimental Psychology: Learning, Memory and Cognition (in press).

  • Friston, K. J., Homes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 4, 189–210.

    Google Scholar 

  • Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gauthier, I., Hayward, W. G., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (2002). BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron, 34(1), 161–171.

    Article  PubMed  Google Scholar 

  • Ghaëm, O., Mellet, E., Crivello, F., Tzourio, N., Mazoyer, B., Berthoz, A., et al. (1997). Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport, 8, 739–744.

    Article  PubMed  Google Scholar 

  • Goodridge, J. P., & Taube, J. S. (1995). Preferential use of the landmark navigational system by head direction cells in rats. Behavioral Neuroscience, 109, 49–61.

    Article  PubMed  Google Scholar 

  • Halligan, P. W., & Marshall, J. C. (1991). Left neglect in near but not far space in man. Nature, 350, 498–500.

    Article  PubMed  Google Scholar 

  • Harris, I. M., Egan, G. F., Sonkkila, C., Tochon-Danguy, H. J., Paxinos, G., & Watson, J. D. G. (2000). Selective right parietal lobe activation during mental rotation: A parametric PET study. Brain, 123(1), 65–73.

    Article  PubMed  Google Scholar 

  • Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37, 877–888.

    Article  PubMed  Google Scholar 

  • Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14(11), 6336–6353.

    PubMed  Google Scholar 

  • Holmes, A. P., & Friston, K. J. (1998). Generalisability, random effects and population inference. Neuroimage, 7, S754.

    Google Scholar 

  • Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.

    PubMed  Google Scholar 

  • Maguire, E. A. (2001). The retrosplenial contributions to human navigation: A review of lesion and neuroimaging findings. Scandinavian Journal of Psychology, 42, 225–238.

    Article  PubMed  Google Scholar 

  • Maguire, E. A., Burgess, N., Donnott, J. G., Frackowiak, R. S. J., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there. A human navigation network. Science, 280, 921–924.

    Google Scholar 

  • McNamara, T. P. (2003). How are the locations of objects in the environment represented in memory? In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial reasoning. LNAI 2685 (pp. 174–191). Berlin Heidelberg New York: Springer.

  • McNamara, T. P., & Shelton, A. L. (2003). Cognitive maps and the hippocampus. Trends in Cognitive Science, 7, 333–335.

    Article  Google Scholar 

  • Mellet, E., Bricogne, S., Tzourio-Mazoyer, N., Ghaëm, O., Petit, L., Zago, L., et al. (2000). Neural correlates of topographic mental exploration: The impact of route versus survey learning. NeuroImage, 12, 588–600.

    Article  PubMed  Google Scholar 

  • Moeser, S. D. (1988). Cognitive mapping in a complex building. Environment and Behavior, 20, 21–49.

    Article  Google Scholar 

  • Montello, D. R., Waller, D., Hegarty, M., & Richardson, A. E. (2004). Spatial memory of real environments, virtual environments, and maps. In G. L. Allen (Eds.), Human spatial memory; remembering where (pp. 251–285). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Pruessmann, K. P., Weiger, M., Scheidegger, M. B., & Boesiger, P. (1999). SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 42, 952–962.

    Article  PubMed  Google Scholar 

  • Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., et al. (2000). Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience, 12(2), 310–320.

    Article  PubMed  Google Scholar 

  • Robertson, I. H., & Marshall, J. C. (Eds.). (1993). Unilateral neglect: Clinical and experimental studies. Hove, UK: Lawrence Erlbaum Associates.

  • Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in ‘desk-top’ virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology: Applied, 3, 143–159.

    Article  Google Scholar 

  • Rudge, P., & Warrington, E. K. (1991). Selective impairment of memory and visual perception in splenial tumors. Brain, 114, 349–360.

    Article  PubMed  Google Scholar 

  • Shelton, A. L., & Gabrieli, J. D. E. (2002). Neural correlates of encoding space from route and survey perspectives. Journal of Neuroscience, 22, 2711–2717.

    PubMed  Google Scholar 

  • Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural correlates of individual differences in spatial learning strategies. Neuropsychology, 18, 442–449.

    Article  PubMed  Google Scholar 

  • Shelton, A. L., & Jambulingam, N. (2006). What do you know? Self-assessed learning in route and survey environments, submitted for publication.

  • Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310.

    Article  PubMed  Google Scholar 

  • Shelton, A. L., & McNamara, T. P. (2004). Orientation and perspective dependence in route and survey learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 158–170.

    Article  PubMed  Google Scholar 

  • Shelton, A. L., Yamamoto, N., Fields, A. W., & Spence, G. O. (2006). Sequential information in route and survey environmental learning, submitted for publication.

  • Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 10, pp. 9–55). New York: Academic.

  • Tagaris, G. A. (1998). Functional magnetic resonance imaging of mental rotation and memory scanning: A multidimensional scaling analysis of brain activation patterns. Brain Research Reviews, 26(2–3), 106–112.

    Article  PubMed  Google Scholar 

  • Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N., & Hirayama, K. (1997). Pure topographical disorientation due to right retrosplenial lesion. Neurology, 49, 464–469.

    PubMed  Google Scholar 

  • Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 66, 170–189.

    PubMed  Google Scholar 

  • Taube, J. S., Goodridge, J. P., Golob, E. J., Dudchenko, P. A., & Stackman, R. W. (1996). Processing the head direction cell signal: A review and commentary. Brain Research Bulletin, 40, 477–486.

    Article  PubMed  Google Scholar 

  • Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589.

    Article  PubMed  Google Scholar 

  • Tlauka, M., & Wilson, P. N. (1994). The effect of landmarks on route-learning in a computer simulated environment. Journal of Environmental Psychology, 14, 303–313.

    Article  Google Scholar 

  • Tversky, B. (1991). Spatial mental models. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 27, pp. 109–145). San Diego: Academic.

  • Vanrie, J., Béatse, E., Wagemans, J., Sunaert, S., & Van Hecke, P. (2002). Mental rotation versus invariant features in object perception from different viewpoints: An fMRI study. Neuropsychologia, 40, 917–930.

    Article  PubMed  Google Scholar 

  • Waterman, S., & Gordon, D. (1984). A quantitative-comparative approach to analysis of distortion in mental maps. Professional Geographer, 36(3), 326–337.

    Article  Google Scholar 

  • Weiss, P. H., Marshall, J. C., Wunderlich, G., Tellmann, L., Halligan, P. W., Freund, H.-J., et al. (2000). Neural consequences of acting in near versus far space: A physiological basis for clinical dissociations. Brain, 123, 2531–2541.

    Article  PubMed  Google Scholar 

  • Werner, S., & Schmidt, K. (1999). Environmental reference systems for large-scale spaces. Spatial Cognition and Computation, 1(4), 447–473.

    Article  Google Scholar 

  • Wolbers, T., & Buchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. Journal of Neuroscience, 25(13), 3333–3340.

    Article  PubMed  Google Scholar 

  • Yamamoto, N., & Shelton, A. L. (2005). Visual and proprioceptive representations in spatial memory. Memory & Cognition, 33(1), 140–150.

    Google Scholar 

  • Zacks, J., Rypma, B., Gabrieli, J. D. E., Tversky, B., & Glover, G. H. (1999). Imagined transformations of bodies: An fMRI investigation. Neuropsychologia, 37(9), 1029–1040.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dana Clark and Megan Carr for assistance with data collection and coding. We also thank Marci Flanery and Naohide Yamamoto for comments on the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Shelton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelton, A.L., Pippitt, H.A. Fixed versus dynamic orientations in environmental learning from ground-level and aerial perspectives. Psychological Research 71, 333–346 (2007). https://doi.org/10.1007/s00426-006-0088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-006-0088-9

Keywords

Navigation