Skip to main content
Log in

Task set determines the amount of crowding

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The present study deals with the question of how crowding effects, which are interactions among adjacent features or characters, emerges automatically or by so-called higher level controlled processing. Two experiments are presented comparing performances during detecting, localizing, and identifying a flanked target in same strings when the target was defined on the basis of either its form or its category. Detection and localization performances were better for form- relative to category-defined targets whereas the reverse was observed for identification performance. This shows that the interacting information is indeed high level in that it is affected by task settings like the defining target feature and the observers’ task set. The results suggest that crowding effects do not emerge due to processes depending on the parameters of stimulus presentation, but due to processes activated by certain task sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8, 457–464.

    Article  PubMed  Google Scholar 

  • Aubert, H., & Foerster, R. (1867). Beitraege zur Kenntniss des indirecten Sehens. Untersuchungen ueber den Raumsinn der Retina (Contributions to the knowledge of indirect vision. Studies on the spatial sense of the retina). Archiv fuer Ophthalmologie, 3 (2), 1–37.

    Google Scholar 

  • Bachmann, T. (1989). Microgenesis as traced by the transient paired-forms paradigm. Acta Psychologica, 70, 3–17.

    Article  PubMed  Google Scholar 

  • Bachmann, T. (2000). Microgenesic approach to the conscious mind. Amsterdam: John Benjamins

    Google Scholar 

  • Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226, 177–178.

    Article  PubMed  Google Scholar 

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    PubMed  Google Scholar 

  • Coltheart, M., Curtis, B., Atkins, P., & Haller, M. (1993). Models of reading aloud: Dual-route and parallel-distributed-processing approaches. Psychological Review, 100, 589– 608.

    Article  Google Scholar 

  • Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204–256.

    Article  PubMed  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.

    Google Scholar 

  • Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518–565.

    Article  PubMed  Google Scholar 

  • Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in perceptual learning. Neuron, 36, 791–804.

    Article  PubMed  Google Scholar 

  • Huckauf, A., & Heller, D. (2002). Spatial selection in peripheral letter recognition: In search of boundary conditions. Acta Psychologica, 111, 101–123.

    Article  PubMed  Google Scholar 

  • Huckauf, A., & Heller, D. (2004). On the relations between crowding and visual masking. Perception & Psychophysics, 66, 584–595.

    Google Scholar 

  • Huckauf, A., Heller, D., & Nazir, T. A. (1999). Lateral masking: Some limitations of the feature interaction account. Perception & Psychophysics, 61, 177–189.

    Google Scholar 

  • McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375–407.

    Article  Google Scholar 

  • Merikle, P. M. (1980). Selection from visual persistence by perceptual groups and category membership. Journal of Experimental Psychology: General, 109, 279–295.

    Article  Google Scholar 

  • Pelli, D. G. (1997) The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.

    PubMed  Google Scholar 

  • Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary masking: Distinguishing feature detection and integration. Journal of Vision, 4, 1136–1169.

    Article  PubMed  Google Scholar 

  • Posner, M. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.

    Article  PubMed  Google Scholar 

  • Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of stimulus material. Journal of Experimental Psychology, 81, 274–280.

    Article  Google Scholar 

  • Sanocki, T. (1987). Visual knowledge underlying letter perception: Font-specific, schematic tuning. Journal of Experimental Psychology: Human Perception and Performance, 13, 267–278.

    Article  PubMed  Google Scholar 

  • Sperling, G. (1960). The information available in brief visual presentations. Psychology Monographs, 74, Whole No. 498.

  • Treisman, A., & Paterson, R. (1984). Emergent features, attention, and object perception. Journal of Experimental Psychology: Human Perception and Performance, 10, 12–31.

    Article  PubMed  Google Scholar 

  • Von Wright, J. M. (1968). Selection in immediate visual memory. Quarterly Journal of Experimental Psychology, 20, 62–68.

    Article  PubMed  Google Scholar 

  • Wheeler, D. D. (1970). Processes in word recognition. Cognitive Psychology, 1, 59–85.

    Article  Google Scholar 

  • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419–433.

    Article  PubMed  Google Scholar 

  • Wolford, G. (1975). Perturbation model for letter identification. Psychological Review, 82, 184–199.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Hans Strasburger and Dirk Vorberg for extremely constructive and helpful comments on an earlier version of the manuscript and to Daniela Krause, Marion Kulik, Malte Heinbockel, and Mario Urbina for assistance in data collection and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Huckauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huckauf, A. Task set determines the amount of crowding. Psychological Research 71, 646–652 (2007). https://doi.org/10.1007/s00426-006-0054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-006-0054-6

Keywords

Navigation