Skip to main content
Log in

A combined transcriptomic and proteomic analysis of chrysanthemum provides new insights into petal senescence

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Numerous transcription factor genes and methylation-related genes were differentially expressed in senescent petals compared with control petals.

Abstract

Studying petal senescence is crucial for extending the postharvest longevity of cut flowers, but petal senescence remains relatively unexplored compared to well-studied leaf senescence. In this study, a combined transcriptomic and proteomic analysis of senescent (22 days after cutting) and control (0 day after cutting) petals was performed to investigate the molecular processes underlying petal senescence of chrysanthemum (Chrysanthemum morifolium Ramat.), an important cut flower crop worldwide. A total of 11,324 differentially expressed genes (DEGs), including 4888 up-regulated and 6436 down-regulated genes, and 403 differentially expressed proteins (DEPs), including 210 up-regulated and 193 down-regulated proteins, were identified at transcript and protein levels, respectively. A cross-comparison of transcriptomic and proteomic data identified 257 consistent DEGs/DEPs, including 122 up-regulated and 135 down-regulated DEGs/DEPs. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that “cutin, suberine and wax biosynthesis” is a main pathway for both DEGs and DEPs, especially for down-regulated DEGs/DEPs. Functional analysis indicated that chrysanthemum genes mainly encoding putative cytochrome P450s, non-specific lipid-transfer proteins, subtilisin-like proteases, AAA-ATPases, proteins essential for cuticular wax biosynthesis, and proteins in hormone signal transduction or ubiquitination were differentially expressed at both transcript and protein levels. In addition, numerous transcription factor genes and methylation-related genes were also differentially expressed, inferring an involvement of transcriptional and epigenetic regulation in petal senescence. These results provide a valuable resource of studying chrysanthemum senescence and significant insights into petal senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the finding of in this study are available in the supplementary material of this article. The raw datasets in this study are available from the first author or corresponding author on reasonable request.

Abbreviations

DEG:

Differentially expressed gene

DEP:

Differentially expressed protein

PCD:

Programmed cell death

TMT:

Tandem mass tag

References

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    Article  CAS  PubMed  Google Scholar 

  • Barh D, Khan MS, Davies E (2015) PlantOmics: the omics of plant science. Springer India

    Book  Google Scholar 

  • Bartoli CG, Guiamet JJ, Montaldi ER (1997) Ethylene production and responses to exogenous ethylene in senescing petals of Chrysanthemum morifolium RAM cv Unsei. Plant Sci 124:15–21

    Article  CAS  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubes J (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic Stresses. Plant Physiol 156:29–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang X, Donnelly L, Sun D, Rao J, Reid MS, Jiang CZ (2014) A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. PLoS ONE 9(2):e88320

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen WH, Li PF, Chen MK, Lee YI, Yang CH (2015) FOREVER YOUNG FLOWER negatively regulates ethylene response DNA-binding factors by activating an ethylene-responsive factor to control Arabidopsis floral organ senescence and abscission. Plant Physiol 168:1666–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng GP, Huang H, Zhou LY, He SG, Zhang YJ, Chen XA (2019) Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: a comparative investigation. Plant Physiol Biochem 135:404–410

    Article  CAS  PubMed  Google Scholar 

  • Cheng YL, Xia XH, Lin YL, Cao HH, Yao JN, Li ZG (2020) Ubiquitylome study highlights ubiquitination of primary metabolism related proteins in fruit response to postharvest pathogen infection. Postharvest Biol Technol 163:111142

    Article  CAS  Google Scholar 

  • Chichkova NV, Shaw J, Galiullina RA, Drury GE, Tuzhikov AI, Kim SH, Kalkum M, Hong TB, Gorshkova EN, Torrance L, Vartapetian AB, Taliansky M (2010) Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J 29:1149–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ B, Sussenbacher I, Moser S, Bichsel N, Egert A, Muller T, Krautler B, Hortensteiner S (2013) Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell 25:1868–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui YJ, Peng YL, Zhang Q et al (2021) Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J 105:942–956

    Article  CAS  PubMed  Google Scholar 

  • Detich N, Hamm S, Just G, Knox JD, Szyf M (2003) The methyl donor S-adenosylmethionine inhibits active demethylation of DNA—a candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. J Biol Chem 278:20812–20820

    Article  CAS  PubMed  Google Scholar 

  • Eklund DM, Edqvist J (2003) Localization of nonspecific lipid transfer proteins correlate with programmed cell death responses during endosperm degradation in Euphorbia lagascae seedlings. Plant Physiol 132:1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan HM, Liu BW, Ma FF, Sun X, Zheng CS (2019) Proteomic profiling of root system development proteins in chrysanthemum overexpressing the CmTCP20 gene. Plant Sci 287:110175

    Article  CAS  PubMed  Google Scholar 

  • Friedman WE, Moore RC, Purugganan MD (2004) The evolution of plant development. Am J Bot 91:1726–1741

    Article  PubMed  Google Scholar 

  • Fu X, Su JS, Yu KL, Cai YF, Zhang F, Chen SM, Fang WM, Fadi C, Guan ZY (2018) Genetic variation and association mapping of aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Euphytica 214:21

    Article  Google Scholar 

  • Guo W, Zheng L, Zhang Z, Zeng W (2003) Phytohormones regulate senescence of cut chrysanthemum. Acta Hort 624:349–355

    Article  CAS  Google Scholar 

  • Guo JH, Liu JX, Wei Q, Wang RM, Yang WY, Ma YY, Chen GJ, Yu YX (2017) Proteomes and ubiquitylomes analysis reveals the involvement of ubiquitination in protein degradation in petunias. Plant Physiol 173:668–687

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Ren G, Zhang K, Li Z, Guo H (2021) Leaf senescence: progression, regulation, and application. Mol Hortic 1:5

    Article  Google Scholar 

  • Hamed KB, Castagna A, Salem E, Ranieri A, Abdelly C (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regul 53:185–194

    Article  Google Scholar 

  • Huang D, Li XW, Sun M, Zhang TX, Pan HT, Cheng TR, Wang J, Zhang QX (2016) Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front Plant Sci 7:287

    Article  Google Scholar 

  • Jeffcoat B, Cockshull KE (1972) Changes in levels of endogenous growth-regulators during development of flowers of Chrysanthemum morifolium. J Exp Bot 23:722–732

    Article  CAS  Google Scholar 

  • Jetter R, Riederer M (2016) Localization of the transpiration barrier in the epi- and intracuticular waxes of eight plant species: water transport resistances are associated with fatty acyl rather than alicyclic components. Plant Physiol 170:921–934

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Landmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357-U121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ren L, Gao Z, Jiang MM, Liu Y, Zhou L, He YJ, Chen HY (2017) Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant Cell Environ 40:3069–3087

    Article  CAS  PubMed  Google Scholar 

  • Lin YL, Fan LQ, Xia XH, Wang ZK, Yin YP, Cheng YL, Li ZG (2019) Melatonin decreases resistance to postharvest green mold on citrus fruit by scavenging defense-related reactive oxygen species. Postharvest Biol Technol 153:21–30

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Cai L, Lu W, Tan H, Gao J (2005) Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Sci China Life Sci 48:434–444

    Article  CAS  Google Scholar 

  • Ma GY, Shi XH, Zou QC, Tian DQ, An X, Zhu KY (2018a) iTRAQ-based quantitative proteomic analysis reveals dynamic changes during daylily flower senescence. Planta 248:859–873

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Ma C, Liu Y, Shahid MO, Wang CP, Gao JP (2018b) Petal senescence: a hormone view. J Exp Bot 69:719–732

    Article  CAS  PubMed  Google Scholar 

  • Ma YZ, Wang KZ, Pan JB, Fan ZH, Tian CH, Deng XB, Ma KM, Xia XH, HuangYL ZJLC (2019) Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal-regulated kinase pathways. Neurobiol Dis 124:322–334

    Article  CAS  PubMed  Google Scholar 

  • Mondal R, Antony S, Roy S, Chattopadhyay SK (2021) Programmed cell death (PCD) in plant: molecular mechanism, regulation and cellular dysfunction in response to development and stress. https://www.intechopen.com/online-first/77139

  • Nakaminami K, Matsui A, Nakagami H, Minami A, Nomura Y, Tanaka M, Morosawa T, Ishida J, Takahashi S, Uemura M, Shirasu K, Seki M (2014) Analysis of differential expression patterns of mRNA and protein during cold-acclimation and de-acclimation in Arabidopsis. Mol Cell Proteomics 13:3602–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagel O, Loroch S, Sickmann A, Zahedi RP (2015) Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomic 12:235–253

    Article  CAS  Google Scholar 

  • Panavas T, Pikula A, Reid PD, Rubinstein B, Walker EL (1999) Identification of senescence-associated genes from daylily petals. Plant Mol Biol 40:237–248

    Article  CAS  PubMed  Google Scholar 

  • Price AM, Aros Orellana DF, Salleh FM, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ (2008) A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol 147:1898–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    Article  CAS  PubMed  Google Scholar 

  • Roberts IN, Passeron S, Barneix AJ (2006) The two main endoproteases present in dark-induced senescent wheat leaves are distinct subtilisin-like proteases. Planta 224:1437–1447

    Article  CAS  PubMed  Google Scholar 

  • Roberts IN, Caputo C, Kade M, Criado MV, Barneix AJ (2011) Subtilisin-like serine proteases involved in N remobilization during grain filling in wheat. Acta Physiol Plant 33:1997–2001

    Article  CAS  Google Scholar 

  • Roberts IN, Caputo C, Criado MV, Funk C (2012) Senescence-associated proteases in plants. Physiol Plant 145:130–139

    Article  CAS  PubMed  Google Scholar 

  • Rogers HJ (2013) From models to ornamentals: how is flower senescence regulated? Plant Mol Biol 82:563–574

    Article  CAS  PubMed  Google Scholar 

  • Shahri W, Tahir I (2014) Flower senescence: some molecular aspects. Planta 239:277–297

    Article  CAS  PubMed  Google Scholar 

  • Shemesh-Mayer E, Ben-Michae T, Rotem N, Rabinowitch HD, Doron-Faigenboim A, Kosmala A, Perlikowski D, Sherman A, Kamenetsky R (2015) Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development. Front Plant Sci 6:271

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibuya K (2018) Molecular aspects of flower senescence and strategies to improve flower longevity. Breeding Sci 68:99–108

    Article  CAS  Google Scholar 

  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2009) Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regul 58:107–117

    Article  CAS  Google Scholar 

  • Tripathi SK, Tuteja N (2007) Integrated signaling in flower senescence: an overview. Plant Signal Behav 2:437–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  PubMed  Google Scholar 

  • van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59:453–480

    Article  PubMed  Google Scholar 

  • van Doorn WG, Balk PA, van Houwelingen AM, Hoeberichts FA, Hall RD, Vorst O, van der Schoot C, van Wordragen MF (2003) Gene expression during anthesis and senescence in Iris flowers. Plant Mol Biol 53:845–863

    Article  PubMed  Google Scholar 

  • Veluru A, Neema M, Prakash K, Arora A, Singh MC (2018) Regulation of chrysanthemum cut flower senescence using 5-sulfosalicylic acid and aluminium sulphate. J Appl Hortic 20:242–246

    Article  Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wang BF, Zhang YX, Bi ZZ, Liu QE, Xu TT, Yu N, Cao YR, Zhu AK, Wu WX, Zhan XD, Anis GB, Yu P, Chen DB, Cheng SH, Cao LY (2019) Impaired function of the calcium-dependent protein kinase, OsCPK12, leads to early senescence in rice (Oryza sativa L.). Front Plant Sci 10:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Hanson MR (2000) Programmed cell death during pollination-induced petal senescence in petunia. Plant Physiol 122:1323–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Ishida H, Reisen D, Hanson MR (2006) Upregulation of a tonoplast-localized cytochrome P450 during petal senescence in Petunia inflata. BMC Plant Biol 6:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Chang XX, Kasuga T, Bui M, Reid MS, Jiang CZ (2015) A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Hortic Res 2:15059

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hu SL, Zhang ZJ, Hu LY, Jiang CX, Wei ZJ, Liu JA, Wang HL, Jiang ST (2011) Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biol Technol 60:251–257

    Article  CAS  Google Scholar 

  • Zhang BT, Van Aken O, Thatcher L, De Clercq I, Duncan O, Law SR, Murcha MW, van der Merwe M, Seifi HS, Carrie C, Cazzonelli C, Radomiljac J, Hoefte M, Singh KB, Van Breusegem F, Whelan J (2014) The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. Plant J 80:709–727

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhao QC, Zeng DX, Xu JH, Zhou HG, Wang FL, Ma N, Li YH (2019) RhMYB108, an R2R3-MYB transcription factor, is involved in ethylene- and JA-induced petal senescence in rose plants. Hortic Res 6:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2018YFD1000407), the Fundamental Research Funds for the Central Universities (2020CDJQY-A074 and 2021CDJLXB005), and the Youth Top-notch Talent Support Program of Chongqing (CQYC20190525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Li, R., Cheng, Y. et al. A combined transcriptomic and proteomic analysis of chrysanthemum provides new insights into petal senescence. Planta 255, 22 (2022). https://doi.org/10.1007/s00425-021-03808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03808-9

Keywords

Navigation