Skip to main content
Log in

Advancement of research on plant NLRs evolution, biochemical activity, structural association, and engineering

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In this review, we have included evolution of plant intracellular immune receptors, oligomeric complex formation, enzymatic action, engineering, and mechanisms of immune inspection for appropriate defense outcomes.

Abstract

NLR (Nucleotide binding oligomerization domain containing leucine-rich repeat) proteins are the intracellular immune receptors that recognize pathogen-derived virulence factors to confer effector-triggered immunity (ETI). Activation of plant defense by the NLRs are often conveyed through N-terminal Toll-like/ IL-1 receptor (TIR) or non-TIR (coiled-coils or CC) domains. Homodimerization or self-association property of CC/ TIR domains of plant NLRs contribute to their auto-activity and induction of in planta ectopic cell death. High resolution crystal structures of Arabidopsis thaliana RPS4TIR, L6TIR, SNC1TIR, RPP1TIR and Muscadinia rotundifolia RPV1TIR showed that interaction is mediated through one or two distinct interfaces i.e., αA and αE helices comprise AE interface and αD and αE helices were found to form DE interface. By contrast, conserved helical regions were determined for CC domains of plant NLRs. Evolutionary history of NLRs diversification has shown that paired forms were originated from NLR singletons. Plant TIRs executed NAD+ hydrolysis activity for cell death promotion. Plant NLRs were found to form large oligomeric complexes as observed in animal inflammasomes. We have also discussed different protein engineering methods includes domain shuffling, and decoy modification that increase effector recognition spectrum of plant NLRs. In summary, our review highlights structural basis of perception of the virulence factors by NLRs or NLR pairs to design novel classes of plant immune receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARC:

APAF-1 (apoptotic protease-activating factor 1), R proteins and CED-4

Avr:

Avirulent

CNL:

Coiled coil (CC) domain containing NLR

EDS1:

Enhanced Disease Susceptibility 1

ETI:

Effector-triggered immunity

ETS:

Effector-triggered susceptibility

HR:

Hypersensitive response

NLR:

Nucleotide-binding site-leucine-rich repeat protein

RGA:

Resistance gene analog

TNL:

Toll-like/ IL-1 receptor protein (TIR) domain-containing NLR

T3SS:

Type III secretion systems

References

  • Adachi H, Derevnina L, Kamoun S (2019) NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Curr Opin Plant Biol 50:121–131

    CAS  PubMed  Google Scholar 

  • Adachi H, Kamoun S, Maqbool A (2019) A resistosome-activated ‘death switch.’ Nat Plants 5:457–458

    PubMed  Google Scholar 

  • Ade J, DeYoung BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci USA 104:2531–2536

    CAS  PubMed  Google Scholar 

  • Baggs E, Dagdas G, Krasileva KV (2017) NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Curr Opin Plant Biol 38:59–67

    CAS  PubMed  Google Scholar 

  • Bailey PC et al (2018) Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol 19:23

    PubMed  PubMed Central  Google Scholar 

  • Bakker EG, Toomajian C, Kreitman M, Bergelson J (2006) A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant cell 18:1803–1818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baudin M, Hassan JA, Schreiber KJ, Lewis JD (2017) Analysis of the ZAR1 immune complex reveals determinants for immunity and molecular interactions. Plant Physiol 174:2038–2053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayless AM, Nishimura MT (2020) Enzymatic functions for Toll/Interleukin-1 receptor domain proteins in the plant immune system. Front Genet 11:539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belkhadir Y, Nimchuk Z, Hubert DA, Mackey D, Dangl JL (2004) Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16(10):2822–2835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bentham A, Burdett H, Anderson PA, Williams SJ, Kobe B (2017) Animal NLRs provide structural insights into plant NLR function. Ann Bot 119:827–702

    PubMed  Google Scholar 

  • Bentham AR, Zdrzalek R, De la Concepcion JC, Banfield MJ (2018) Uncoiling CNLs: structure/function approaches to understanding CC domain function in plant NLRs. Plant Cell Physiol 59(12):2398–2408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berkey R, Zhang Y, Ma X, King H, Zhang Q, Wang W et al (2017) Homologues of the RPW8 resistance protein are localized to the extrahaustorial membrane that is likely synthesized de novo. Plant Physiol 173:600–613

    CAS  PubMed  Google Scholar 

  • Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C, Newell K et al (2016) Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model. Plant Cell 28:146–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E et al (2011) Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee S, Halane MK, Kim SH, Gassmann W (2011) Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334:1405–1408

    CAS  PubMed  Google Scholar 

  • Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, Schulze-Lefert P (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16(12):3480–3495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boccara M, Sarazin A, Thiébeauld O, Jay F, Voinnet O, Navarro L, Colot V (2014) The Arabidopsis miR472- RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the posttranscriptional control of disease resistance genes. Plos Pathog 10:e1003883

    PubMed  PubMed Central  Google Scholar 

  • Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL (2011) Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci USA 108:16463–16468

    CAS  PubMed  Google Scholar 

  • Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N et al (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci USA 105:14970–14975

    CAS  PubMed  Google Scholar 

  • Burdett H, Bentham AR, Williams SJ, Dodds PN, Anderson PA, Banfield MJ, Kobe B (2019) The plant “Resistosome”: Structural insights into immune signaling. Cell Host Microbe 26:193–201

    CAS  PubMed  Google Scholar 

  • Burdett H, Kobe B, Anderson PA (2019) Animal NLRs continue to inform plant NLR structure and function. Arch Biochem Biophys 30(670):58–68

    Google Scholar 

  • Casey LW et al (2016) The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc Natl Acad Sci USA 113:12856–12861

    CAS  PubMed  Google Scholar 

  • Cesari S et al (2016) Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. Proc Natl Acad Sci USA 113(36):10204–10209

    CAS  PubMed  Google Scholar 

  • Césari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y et al (2014) The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33:1941–1959

    PubMed  PubMed Central  Google Scholar 

  • Césari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T (2014) The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33(17):1941–1959

    PubMed  PubMed Central  Google Scholar 

  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel JB, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/ RGA5 recognizes the Magnaporthe oryzae effectors AVRPia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty J, Ghosh P, Das S (2018) Autoimmunity in plants. Planta 248:751–767

    CAS  PubMed  Google Scholar 

  • Chakraborty J, Jain A, Mukherjee D, Ghosh S, Das S (2018) Functional diversification of structurally alike NLR proteins in plants. Plant Sci 269:85–93

    CAS  PubMed  Google Scholar 

  • Chakraborty J, Priya P, Ghosh Dastidar S, Das, (2018) Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea. Plant Sci 276:111–133

    CAS  PubMed  Google Scholar 

  • Chan SL, Mukasa T, Santelli E, Low LY, Pascual J (2010) The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci 19:155–161

    CAS  PubMed  Google Scholar 

  • Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen Q-H (2013) Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signalling. Plant Cell 25(3):1158–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhu M, Jiang L, Zhao W, Li J, Wu J, Li C, Bai B, Lu G, Chen H, Moffett P, Tao X (2016) A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain. New Phytol 212:161–175

    CAS  PubMed  Google Scholar 

  • Chiumenti M, Catacchio CR, Miozzi L, Pirovano W, Ventura M, Pantaleo V (2018) A short indel-lacking-resistance gene triggers silencing of the photosynthetic machinery components through TYLCSV-associated endogenous siRNAs in tomato. Front Plant Sci 9:1470

    PubMed  PubMed Central  Google Scholar 

  • Chung EH, El-Kasmi F, He Y, Loehr A, Dangl JL (2014) A plant phosphoswitch platform repeatedly targeted by type III effector proteins regulates the output of both tiers of plant immune receptors. Cell Host Microbe 16:484–494

    CAS  PubMed  Google Scholar 

  • Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–342

    CAS  PubMed  Google Scholar 

  • Collier SM, Hamel LP, Moffett P (2011) Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol Plant-Microbe Interact 24:918–931

    CAS  PubMed  Google Scholar 

  • Danot O, Marquenet E, Vidal-Ingigliardi D, Richet E (2009) Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins. Structure 17:172–182

    CAS  PubMed  Google Scholar 

  • De la Concepcion JC, Franceschetti M, MacLean D, Terauchi R, Kamoun S, Banfield MJ (2019) Protein engineering expands the effector recognition profile of a rice NLR immune receptor. eLife 8:e47713

    PubMed  PubMed Central  Google Scholar 

  • De la Concepcion JC, Franceschetti M, Maqbool A, Saitoh H, Terauchi R, Kamoun S, Banfield MJ (2018) Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nat Plants 4:576–585

    PubMed  Google Scholar 

  • DeYoung BJ, Qi D, Kim SH, Burke TP, Innes RW (2012) Activation of a plant nucleotide binding-leucine rich repeat disease resistance protein by a modified self-protein. Cell Microbiol 14:1071–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti AM et al (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888–8893

    CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    CAS  PubMed  Google Scholar 

  • Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW et al (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7:971–981

    CAS  PubMed  Google Scholar 

  • Du X, Miao M, Ma X, Liu Y, Kuhl JC, Martin GB, Xiao F (2012) Plant programmed cell death caused by an autoactive form of Prf is suppressed by co-expression of the Prf LRR domain. Mol Plant 5:1058–1067

    CAS  PubMed  Google Scholar 

  • Duxbury Z et al (2020) Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. Proc Natl Acad Sci USA 117:18832–18839

    CAS  PubMed  Google Scholar 

  • El Kasmi F, Chung EH, Anderson RG, Li J, Wan L, Eitas TK, Gao Z, Dangl JL (2017) Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. Proc Natl Acad Sci USA 114(35):7385–7394

    Google Scholar 

  • El Kasmi F, Nishimura MT (2016) Structural insights into plant NLR immune receptor function. Proc Natl Acad Sci USA 45:12619–12621

    Google Scholar 

  • Feechan A, Turnbull D, Stevens L, Engelhardt S, Birch PJ, Hein I et al (2015) The hypersensitive response in PAMP- and effector-triggered immune responses. In: Gunawardena AN, McCabe PF (eds) Plant programmed cell death. Springer International Publishing, Cham, pp 235–268

    Google Scholar 

  • Grund E, Tremousaygue D, Deslandes L (2019) Plant NLRs with integrated domains: unity makes strength. Plant Physiol 179:1227–1235

    CAS  PubMed  Google Scholar 

  • Gupta S, Chakraborti D, Basu D, Das S (2010) In search of decoy/guardee to R genes: deciphering the role of sugars in defense against Fusarium wilt in chickpea. Plant Signal Behav 5:9

    Google Scholar 

  • Gutierrez JR et al (2010) Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition. Plant J 61:507–518

    CAS  PubMed  Google Scholar 

  • Hao W, Collier SM, Moffett P, Chai J (2013) Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase activating protein 2 (RanGAP2). J Biol Chem 288(50):35868–35876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris CJ, Slootweg EJ, Goverse A, Baulcombe DC (2013) Stepwise artificial evolution of a plant disease resistance gene. Proc Natl Acad Sci USA 110:21189–21194

    CAS  PubMed  Google Scholar 

  • Helm M, Qi M, Sarkar S, Yu H, Whitham SA, Innes RW (2019) Engineering a decoy substrate in soybean to enable recognition of the soybean mosaic virus nia protease. Mol Plant-Microbe Interact 32(6):760–769

    CAS  PubMed  Google Scholar 

  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Ter-Williger DP et al (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365

    CAS  PubMed  Google Scholar 

  • Horsefield S et al (2019) NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365:793–799

    CAS  PubMed  Google Scholar 

  • Hu Z et al (2013) Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341:172–175

    CAS  PubMed  Google Scholar 

  • Hu Z et al (2015) Structural and biochemical basis for induced self-propagation of NLRC4. Science 350(6259):399–404

    CAS  PubMed  Google Scholar 

  • Huh SU, Cevik V, Ding P, Duxbury Z, Ma Y, Tomlinson L, Sarris PF, Jones JDG (2017) Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathog 13(5):e1006376

    PubMed  PubMed Central  Google Scholar 

  • Hwang CF, Bhakta AV, Truesdell GM, Pudlo WM, Williamson VM (2000) Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell 12:1319–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang CF, Williamson VM (2003) Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J 34:585–593

    CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Jones JDG, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395

    PubMed  Google Scholar 

  • Jubic LM, Saile S, Furzer OJ, El-Kasmi F, Dangl JL (2019) Help wanted: helper NLRs and plant immune responses. Curr Opin Plant Biol 50:82–94

    CAS  PubMed  Google Scholar 

  • Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, Dangl JL, Mackey D (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–759

    CAS  PubMed  Google Scholar 

  • Koonin EV, Aravind L (2000) The NACHT family—a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci 25:223–224

    CAS  PubMed  Google Scholar 

  • Kroj T, Chanclud E, Michel-Romiti C, Grand X, Morel JB (2016) Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol 5:e13869

    Google Scholar 

  • Lange C, Hemmrich G, Kloster-meier UC, López-Quintero JA, Miller DJ, Rahn T et al (2011) Defining the origins of the NOD-like Receptor system at the base of animal evolution. Mol Biol Evol 28:1687–1702

    CAS  PubMed  Google Scholar 

  • Le Roux C, Huet G, Jauneau A, Camborde L, Trémousaygue D, Kraut A, Zhou B, Levaillant M, Adachi H, Yoshioka H, Raffaele S, Berthomé R, Couté Y, Parker JE, Deslandes L (2015) A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:1074–1088

    PubMed  Google Scholar 

  • Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR et al (2013) The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci USA 110:18722–18727

    CAS  PubMed  Google Scholar 

  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J et al (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109:1790–1795

    CAS  PubMed  Google Scholar 

  • Liu J, Cheng X, Liu D, Xu W, Wise R, Shen Q-H (2014) The miR9863 family regulates distinct Mla Alleles in barley to attenuate nlr receptor-triggered disease resistance and cell-death signaling. PLoS Genet 10(12):e1004755

    PubMed  PubMed Central  Google Scholar 

  • Ma Y, Guoa H, Hua L, Martineza PP, Moschoua PN, Cevika V, Dinga P, Duxburya Z, Sarris PF, Jones JDG (2018) Distinct modes of derepression of an Arabidopsis immune receptor complex by two different bacterial effectors. Proc Natl Acad Sci USA 115(41):10218–10227

    CAS  PubMed  Google Scholar 

  • Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    CAS  PubMed  Google Scholar 

  • Maekawa T, Cheng W, Spiridon Laurentiu N, Töller A, Lukasik E, Saijo Y et al (2011) Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9:187–199

    CAS  PubMed  Google Scholar 

  • Maqbool A, Saitoh H, Franceschetti M, Stevenson C, Uemura A, Kanzaki H, Kamoun S, Terauchi R, Banfield MJ (2015a) Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4:e08709

    PubMed Central  Google Scholar 

  • Maqbool A, Saitoh H, Franceschetti M, Stevenson CEM, Uemura A, Kanzaki H, Kamoun S, Terauchi R, Banfield MJ (2015b) Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4:e08709

    PubMed Central  Google Scholar 

  • Nishimura MT, Anderson RG, Cherkis KA, Law TF, Liu QL, Machius M, Nimchuk ZL, Yang L, Chung EH, El Kasmi F et al (2017) TIR only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis. Proc Natl Acad Sci USA 114:E2053–E2062

    CAS  PubMed  Google Scholar 

  • Ntoukakis V, Saur IM, Conlan B, Rathjen JP (2014) The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Curr Opin Plant Biol 20:69–74

    CAS  PubMed  Google Scholar 

  • Ortiz D, De Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, Kroj T (2017) Recognition of the Magnaporthe oryzae effector AVRPia by the decoy domain of the rice NLR immune receptor RGA5. Plant Cell 29:156–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P, Dinesh-Kumar SP (2013) Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9(3):e1003235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastora AC, Santos BACM, Vallia AA, Summersa W, Schornack S, Baulcombe DC (2019) Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci USA 116(7):2755–2760

    Google Scholar 

  • Qi D, DeYoung BJ, Innes RW (2012) Structure–function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiol 158:1819–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho MJ, Schultink A, Staskawicz BJ (2018) NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. Proc Natl Acad Sci USA 115:E10979–E10987

    CAS  PubMed  Google Scholar 

  • Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW (2006) Genomic insights into the immune system of the sea urchin. Science 314:952–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravensdale M, Bernoux M, Ve T, Kobe B, Thrall PH, Ellis JG et al (2012) Intramolecular interaction influences binding of the flax L5 and L6 resistance proteins to their AvrL567 ligands. PLoS Pathog 8:e1003004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reubold TF, Wohlgemuth S, Eschenburg S (2009) A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome. J Biol Chem 284(47):32717–32724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacco MA, Mansoor S, Moffett P (2007) A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rx-mediated viral resistance. Plant J 52:82–93

    CAS  PubMed  Google Scholar 

  • Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, Wirthmueller L, Menke FLH, Sohn KH, Jones JDG (2015) A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161(5):1089–1100

    CAS  PubMed  Google Scholar 

  • Saucet SB, Ma Y, Sarris PF, Furzer OJ, Sohn KH, Jones JD (2015) Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nat Commun 6:6338

    CAS  PubMed  Google Scholar 

  • Saur IM, Conlan B, Rathjen JP (2015) The N-terminal domain of the tomato immune protein Prf contains multiple homotypic and Pto kinase interaction sites. J Biol Chem 290(18):11258–11267

    PubMed  PubMed Central  Google Scholar 

  • Schreiber KJ, Bentham A, Williams SJ, Kobe B, Staskawicz BJ (2016) Multiple domain associations within the Arabidopsis immune receptor RPP1 regulate the activation of programmed cell death. PLoS Pathog 12:e1005769

    PubMed  PubMed Central  Google Scholar 

  • Segretin ME, Pais M, Franceschetti M, Chaparro-Garcia A, Bos JI, Banfield MJ, Kamoun S (2014) Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors. Mol Plant-Microbe Interact 27:624–637

    CAS  PubMed  Google Scholar 

  • Seong K, Seo E, Witek K, Li M, Staskawicz B (2020) Evolution of NLR resistance genes with non-canonical N-terminal domains in wild tomato species. New Phytol. https://doi.org/10.1111/nph.16628

    Article  PubMed  Google Scholar 

  • Shen Q-H, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15:732–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BACM, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 24:859–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slootweg E, Koropacka K, Roosien J, Dees R, Overmars H, Lankhorst RK, van Schaik C, Pomp R, Bouwman L, Helder J, Schots A, Bakker J, Smant G, Goverse A (2017) Sequence exchange between homologous NB-LRR genes converts virus resistance into nematode resistance, and vice versa. Plant Physiol 175(1):498–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M et al (2010) Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. Plant Cell 22:4195–4215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slootweg EJ, Spiridon LN, Roosien J, Butterbach P, Pomp R, Westerhof L et al (2013) Structural determinants at the interface of the ARC2 and LRR domains control the activation of the NB-LRR plant immune receptors Rx1and Gpa2. Plant Physiol 162:1510–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staal J, Kaliff M, Dewaele E, Persson M, Dixelius C (2008) RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J 55:188–200

    CAS  PubMed  Google Scholar 

  • Steele JFC, Hughes RK, Banfield MJ (2019) Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor. PLoS ONE 14(8):e0221226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swiderski MR, Birker D, Jones JD (2009) The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol Plant-Microbe Interact 22(2):157–165

    CAS  PubMed  Google Scholar 

  • Takken FLW, Tameling WIL (2009) To nibble at plant resistance proteins. Science 324(5928):744–746

    CAS  PubMed  Google Scholar 

  • Tameling WIL, Baulcombe DC (2007) Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to Potato virus X. Plant Cell 19:1682–1694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ting JPY, Duncan JA, Lei Y (2010) How the non-inflammasome NLRs function in the innate immune system. Science 327:286–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran DTN, Chung E-H, Habring-Mueller A, Demar M, Schwab R, Dangl JL, Weigel D, Chae E (2017) Activation of a plant NLR complex through heteromeric association with an autoimmune risk variant of another NLR. Curr Biol 27:1148–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urbach J, Ausubel FM (2017) The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci USA 114(5):1063–1068

    CAS  PubMed  Google Scholar 

  • van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R227

    PubMed  Google Scholar 

  • van Ooijen G, Mayr G, Albrecht M, Cornelissen BJC, Takken FLW (2008) Transcomplementation, but not physical association of the CC-NB-ARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain. Mol Plant 1:401–410

    PubMed  Google Scholar 

  • Ve T, Williams SJ, Kobe B (2015) Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. Apoptosis 20(2):250–261

    CAS  PubMed  Google Scholar 

  • Wagner S, Stuttmann J, Rietz S, Guerois R, Brunstein E, Bautor J et al (2013) Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14:619–630

    CAS  PubMed  Google Scholar 

  • Wan L et al (2019) TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365:799–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GF, Balint-Kurti PJ (2016) Maize homologs of CCoAOMT and HCT, two key enzymes in lignin biosynthesis, form complexes with the NLR Rp1 protein to modulate the defense response. Plant Physiol 171(3):2166–2177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GF, Ji J, El-Kasmi F, Dangl JL, Johal G, Balint-Kurti PJ (2015) Molecular andfunctional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity. PLoS Pathog 11:e1004674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J (2019) Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364:eaav5870

    CAS  PubMed  Google Scholar 

  • Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, Han Z, Qi Y, Gao N, Wang HW et al (2019) Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364:eaav5868

    CAS  PubMed  Google Scholar 

  • Wang W, Devoto A, Turner JG, Xiao S (2007) Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Mol Plant-Microbe Interact 20:966–976

    CAS  PubMed  Google Scholar 

  • Wang WM, Ma XF, Zhang Y, Luo MC, Wang GL, Bellizzi M, Xiong XY, Xiao SY (2012) PAPP2C interacts with the atypical disease resistance protein RPW8.2 and negatively regulates salicylic acid-dependent defense responses in Arabidopsis. Mol plant 5:1125–1137

    CAS  PubMed  Google Scholar 

  • Williams SJ, Sohn KH, Wan L et al (2014) Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:299–303

    CAS  PubMed  Google Scholar 

  • Williams SJ, Yin L, Foley G, Casey LW, Outram MA, Ericsson DJ, Lu J, Boden M, Dry IB, Kobe B (2016) Structure and Function of the TIR Domain from the Grape NLR Protein RPV1. Front Plant Sci 7:1850

    PubMed  PubMed Central  Google Scholar 

  • Wu C-H, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, Kamoun S (2017) NLR network mediates immunity to diverse plant pathogens. Proc Natl Acad Sci USA 114:8113–8118

    CAS  PubMed  Google Scholar 

  • Xing W et al (2007) The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449:243–247

    CAS  PubMed  Google Scholar 

  • Yang H, Shi Y, Liu J, Guo L, Zhang X, Yang S (2010) A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J 63:283–296

    CAS  PubMed  Google Scholar 

  • Yuan P, Tanaka K, Du L, Poovaiah BW (2018) Calcium signaling in plant autoimmunity: a guard model for AtSR1/CAMTA3-mediated immune response. Mol Plant 11(5):637–639

    CAS  PubMed  Google Scholar 

  • Yue JX, Meyers BC, Chen J-Q, Tian D, Yang S (2012) Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol 193:1049–1063

    CAS  PubMed  Google Scholar 

  • Zhai JX, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y et al (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L et al (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350(6259):404–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2017) Multiple functional self-association interfaces in plant TIR domains. Proc Natl Acad Sci USA 114:E2046–E2052

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang J, Zhang X, Chen JQ, Tian D, Yang S (2009) Genetic signature of rice domestication shown by a variety of genes. J Mol Evol 68:393–402

    CAS  PubMed  Google Scholar 

  • Zhang ZM, Ma KW, Gao L et al (2017) Mechanism of host substrate acetylation by a YopJ family effector. Nat Plants 3:17115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M et al (2015) Atomic structure of the apoptosome: Mechanism of cytochrome c– and dATP-mediated activation of Apaf-1. Genes Dev 29:2349–2361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z et al (2010) Arabodopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci USA 107:13960–13965

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Chakraborty.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, J., Ghosh, P. Advancement of research on plant NLRs evolution, biochemical activity, structural association, and engineering. Planta 252, 101 (2020). https://doi.org/10.1007/s00425-020-03512-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03512-0

Keywords

Navigation