Skip to main content
Log in

Effect of diflufenican on total carotenoid and phytoene production in carrot suspension-cultured cells

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main Conclusion

Diflufenican increased 493-fold the level of phytoene. Diflufenican-induced inhibition of phytoene desaturase gene expression in carrot cells resulted in an increased production of phytoene.

This work analyzes the effect of diflufenican, an inhibitor of phytoene desaturase, on the gene expression profiles of the biosynthetic pathway of carotenoids related with the production of these compounds in carrot cell cultures. The results showed that the presence of 10 µM diflufenican in the culture medium increased phytoene levels, which was 493-fold higher than in control cells after 7 days of treatment but did not alter cell growth in carrot cell cultures. The maximal production of phytoene was reached with 10 µM diflufenican after 7 days of incubation in the presence of light and with 30 g/L sucrose in the culture medium. Moreover, diflufenican decreased the expression of phytoene synthase and phytoene desaturase genes at all the times studied. This diflufenican-induced inhibition of phytoene desaturase gene expression in carrot cell cultures resulted in an increased production of phytoene. Our results provide new insights into the action of diflufenican in carrot cell cultures, which could represent an alternative more sustainable and environmentally friendly system to produce phytoene than those currently used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almagro L, Belchí-Navarro S, Martínez-Márquez A, Bru R, Pedreño MA (2015) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension-cultured cells by using cyclodextrins and coronatine. Plant Physiol Biochem 97:361–367

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, García-Pérez P, Belchí-Navarro S, Sánchez-Pujante PJ, Pedreño MA (2016) New strategies for the use of Linum usitatissimum cell factories for the production of bioactive compounds. Plant Physiol Biochem 99:73–78

    Article  CAS  PubMed  Google Scholar 

  • Azadi P, Otang NV, Chin DP, Nakamura I, Fujisawa M, Harada H, Misawa M, Mii M (2010) Metabolic engineering of Lilium × formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol Rep 4:269–280

    Article  Google Scholar 

  • Biehler E, Alkerwi AA, Hoffmann L, Krause E, Guillaume M, Lair ML, Bohn T (2012) Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: assessment in Luxembourg. J Food Compos Anal 25:56–65

    Article  CAS  Google Scholar 

  • Bishayee A, Sarkar A, Chatterjee M (1995) Hepatoprotective activity of carrot (Daucus carota L.) against carbon tetrachloride intoxication in mouse liver. J Ethnopharmacol 47:69–74

    Article  CAS  PubMed  Google Scholar 

  • Boger P, Sandmann G (1998) Carotenoid biosynthesis inhibitor herbicides—mode of action and resistance mechanisms. Pestic Outlook 9:29–35

    Google Scholar 

  • Botella-Pavía P, Rodríguez-Concepción M (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plant 126:369–381

    Article  Google Scholar 

  • Busch M, Seuter A, Hain R (2002) Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol 128:439–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JK, Stroud CK, Nakamura MT, Lila MA, Erdman JW (2006) Serum testosterone is reduced following short-term phytofluene, lycopene, or tomato powder consumption in F344 rats. J Nutr 136:2813–2819

    Article  CAS  PubMed  Google Scholar 

  • Campisi L, Fambrini M, Michelotti V, Salvini M, Giuntini D, Pugliesi C (2006) Phytoene accumulation in sunflower decreases the transcript levels of the phytoene synthase gene. Plant Growth Regul 48:79–87

    Article  CAS  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    Article  CAS  PubMed  Google Scholar 

  • Dayan FE, Zaccaro MLM (2012) Chlorophyll fluorescence as a marker for herbicide mechanisms of action pesticide. Biochem Physiol 102:189–197

    CAS  Google Scholar 

  • Edwards AJ, Vinyard BT, Wiley ER, Brown ED, Collins JK, Perkins-Veazie P, Clevidence BA (2003) Consumption of watermelon juice increases plasma concentrations of lycopene and β-carotene in humans. J Nut 133:1043–1050

    Article  CAS  Google Scholar 

  • Eliassen AH, Hendrickson SJ, Brinton LA, Buring JE, Campos H, Dai Q, Dorgan JF, Franke AA, Gao YT, Goodman MT, Helzlsouer KJ, Hoffman-Bolton J, Hultén K, Sesso HD, Sowell AL, Tamimi RM, Toniolo P, Wilkens LR, Winkvist A, Zeleniuch-Jacquotte A, Zheng W, Hankinson SE (2012) Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J Natl Cancer Inst 104:1905–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelmann NJ, Rogers RB, Rupassara SI, Garlick PJ, Lila MA, Erdman JW (2010) Production of [13C]-lycopene from high lycopene tomato cell suspension cultures. FASEB J 24:539–546

    Google Scholar 

  • Fatimah AMZ, Norazian MH, Rashidi O (2012) Identification of carotenoid composition in selected ‘ulam’ or traditional vegetables in Malaysia. Int Food Res J 19:527–530

    CAS  Google Scholar 

  • Fischer BB, Rüfenacht K, Dannenhauer K, Wiesendanger M, Eggen RI (2010) Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii. Environ Toxicol Chem 29:2211–2219

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Kiano JW, Truesdale MR, Schuch W, Bramley PM (1999) Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol 40:687–698

    Article  CAS  PubMed  Google Scholar 

  • Fuller B, Smith D, Howerton A, Kern D (2006) Anti-inflammatory effects of CoQ10 and colorless carotenoids. J Cosmet Dermatol 5:30–38

    Article  PubMed  Google Scholar 

  • Giuliano G, Bartley GE, Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppe PP, Krämer K, Van den Berg H, Steenge G, van Vliet T (2003) Synthetic and tomato-based lycopene have identical bioavailability in humans. Eur J Nutr 42:272–278

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim RK (1987) Regulation of synthesis of phenolic. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetics of plants. Academic Press Books, New York, pp 77–95

    Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–670

    Article  CAS  PubMed  Google Scholar 

  • Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180

    Article  CAS  PubMed  Google Scholar 

  • Karppi J, Kurl S, Ronkainen K, Kauhanen J, Laukkanen JA (2013) Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men. PLoS One 8:e64107

    Article  PubMed  PubMed Central  Google Scholar 

  • Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao DY, Katz NB (2002) Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med 227:845–851

    Article  CAS  Google Scholar 

  • Kim BR, Kim SU, Chang YJ (2005) Differential expression of three 1-deoxy-d-xylulose-5-phosphate synthase genes in rice. Biotechnol Lett 27:997–1001

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vallabhaneni R, Wurtzel ET (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maass D, Arango J, Wüst F, Beyer P, Welsch R (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4:e6373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miras-Moreno B, Almagro L, Pedreño MA, Sabater-Jara AB (2016) Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota. Plant Sci 250:154–164

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolle C, Simon G, Rock E, Amouroux P, Rémésy C (2004) Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J Am Soc Hortic Sci 129:523–529

    Article  CAS  Google Scholar 

  • Paetau I, Khachik F, Brown ED, Beecher GR, Kramer TR, Chittams J, Clevidence BA (1998) Chronic ingestion of lycopene-rich tomato juice or lycopene supplements significantly increases plasma concentrations of lycopene and related tomato carotenoids in humans. Am J Clin Nutr 68:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ (2007) Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17:471–482

    Article  CAS  PubMed  Google Scholar 

  • Rakovic J (2014) Effects of the carotenoid inhibiting herbicide diflufenican on the photosynthesis of benthic algae. Thesis Dissertation. Swedish University of Agricultural Sciences

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson GH, Mahoney NE, Goodman N, Pavlath AE (1995) Regulation of lycopene formation in cell suspension culture of VFNT tomato (Lycopersicon esculentum) by CPTA, growth regulators, sucrose, and temperature. J Exp Bot 46:667–673

    Article  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Stange C (2013) Biosynthesis of carotenoids in carrot: an underground story comes to light. Arch Biochem Biophys 539:110–116

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Villalón A, Gas E, Rodríguez-Concepción M (2009a) Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J 60:424–435

    Article  PubMed  Google Scholar 

  • Rodríguez-Villalón A, Gas E, Rodríguez-Concepción M (2009b) Colors in the dark: a model for the regulation of carotenoid biosynthesis in etioplasts. Plant Signal Behav 4:965–967

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi PG, Bao L, Luciani A, Panighi J, Desjobert JM, Costa J, Casanova J, Bolla JM, Berti L (2007) (E)-methylisoeugenol and elemicin: antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J Agric Food Chem 18:7332–7336

    Article  CAS  Google Scholar 

  • Ruiz-Sola MA, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabater-Jara AB, Pedreño MA (2013) Use of β-cyclodextrins to enhance phytosterol production in cell suspension cultures of carrot (Daucus carota L.). Plant Cell, Tiss Org Cult 114:249–258

    Article  CAS  Google Scholar 

  • Saladié M, Wright LP, Garcia-Mas J, Rodriguez-Concepcion M, Phillips MA (2014) The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps. J Exp Bot 65:5077–5092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, Breitenbach J, Kuntz M, Sandmann G (2000) In vitro and in situ inhibition of carotenoid biosynthesis in Capsicum annuum by bleaching herbicides. J Agric Food Chem 48:4676–4680

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Babu S, Gothandam KM (2017) Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase (PDS) gene in Dunaliella salina V-101. Bioresour Technol 242:311–318

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2007) Carotenoids and flavonoids contribute to nutritional protection against skin damage from sunlight. Mol Biotechnol 37:6–30

    Article  CAS  Google Scholar 

  • Tavares AC, Goncalves MJ, Cavaleiro C, Cruz MT, Lopes MC, Canhoto J, Salgueiro LR (2008) Essential oil of Daucus carota subsp. halophilus: composition, antifungal activity and cytotoxicity. J Ethnopharmacol 119:129–134

    Article  CAS  PubMed  Google Scholar 

  • von Oppen-Bezalel L, Fishbein D, Havas F, Ben-Chitrit O, Khaiat A (2015) The photoprotective effects of a food supplement tomato powder rich in phytoene and phytofluene, the colorless carotenoids, a preliminary study. Glob Dermatol 2:178–182

    Google Scholar 

  • Weyman GS, Rufli H, Weltje L, Salinas ER, Hamitou M (2012) Aquatic toxicity tests with substances that are poorly soluble in water and consequences for environmental risk assessment. Environ Toxicol Chem 31:1662–1669

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministerio de Economía y Competitividad (no. BIO2017-82374-R) and Fundación Seneca-Agencia de Ciencia y Tecnología de la Región de Murcia (no. 19876/GERM/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Almagro.

Additional information

Ana Belén Sabater-Jara and Lorena Almagro: Equal contribution as supervisor of Begoña Miras-Moreno.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miras-Moreno, B., Pedreño, M.A., Fraser, P.D. et al. Effect of diflufenican on total carotenoid and phytoene production in carrot suspension-cultured cells. Planta 249, 113–122 (2019). https://doi.org/10.1007/s00425-018-2966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2966-y

Keywords

Navigation