Skip to main content
Log in

The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main Conclusion

The SmERF6, which recognizes the GCC-box of SmCPS1 and SmKSL1 promoter in nucleus, regulates the tanshinone biosynthesis in Salvia miltiorrhiza hairy roots.

Tanshinone, an important medicinal ingredient in Salvia miltiorrhiza, is best known for its use in medicine. However, the transcription factor regulation of tanshinone biosynthesis is unclear. Here, we isolated and identified a transcription factor in the ERF family of S. miltiorrhiza, SmERF6, which was screened from an S. miltiorrhiza cDNA library by the promoters of two key tanshinone synthesis genes (SmKSL1 and SmCPS1); this factor regulated tanshinone biosynthesis. The gene was highly expressed in the root and responded to ethylene treatment. SmERF6 modulated tanshinone biosynthesis by directly binding to an ethylene-responsive element (GCC-box) of the SmKSL1 and SmCPS1 promoters and activating their transcription. Overexpression of SmERF6 in the hairy roots increased their tanshinone accumulation, and SmERF6 silencing by RNAi led to a lower tanshinone content. Furthermore, tanshinone accumulation maintained homeostasis with the total phenolic acid and flavonoid contents in S. miltiorrhiza. These findings elucidated how SmERF6 directly co-regulates the transcription of SmCPS1 and SmKSL1 and modulates tanshinone synthesis to accelerate the metabolic flux of tanshinone accumulation in S. miltiorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SmCPS1 :

Salvia miltiorrhiza copalyl diphosphate synthases 1

SmKSL1 :

Salvia miltiorrhiza kaurene synthase like 1

CT:

Cryptotanshinone

DT-I:

Dihydrotanshinone

ERF:

Ethylene response factor

T-I (IIA):

Tanshinone I (IIA)

References

  • Bai Z, Xia P, Wang R, Jiao J, Ru M, Liu J, Liang Z (2017) Molecular cloning and characterization of five SmGRAS genes associated with tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. PLoS ONE 12(9):e0185322. https://doi.org/10.1371/journal.pone.0185322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blouin M, Mathieu J, Leadley PW (2012) Plant homeostasis, growth and development in natural and artificial soils. Ecol Complex 9(2):10–15

    Article  Google Scholar 

  • Cao ZF, Li J, Chen F, Li YQ, Zhou HM, Liu Q (2001) Effect of two conserved amino acid residues on DREB1A function. Biochem Biokhimiia 66(6):623–627. https://doi.org/10.1023/A:1010251129429

    Article  CAS  Google Scholar 

  • Claeys H, Skirycz A, Maleux K, Inzé D (2012) DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. Plant Physiol 159(2):739–747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui GH, Duan LX, Jin B, Qian J, Xue Z, Shen G, Snyder JH, Song J, Chen S, Huang L, Peters RJ, Qi XQ (2015) Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol 169:1607–1618

    PubMed  PubMed Central  CAS  Google Scholar 

  • Devers EA, Teply J, Reinert A, Gaude N, Krajinski F (2013) An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula. BMC Plant Biol 13:82. https://doi.org/10.1186/1471-2229-13-82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong Y, Morris-Natschke SL, Lee KH (2011) Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep 28(3):529–542

    Article  PubMed  CAS  Google Scholar 

  • Druege U, Franken P, Hajirezaei MR (2016) Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci 7(133):381. https://doi.org/10.3389/fpls.2016.00381

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Van dBL, Claeys H, Van VK, Matsui M, Inzé D (2015) The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiol 169(1):166–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12(3):393–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao W, Hu TY, Guo J, Lv DM, Dai ZB, Zhou YJ, Huang LQ (2015) Research progress of synthetic biology for tanshinones. China J Chin Mater Med 40(13):2486–2491

    CAS  Google Scholar 

  • Gu L, Han ZX, Zhang LF, Downie B, Zhao TY (2013) Functional analysis of the 5′ regulatory region of the maize GALACTINOL SYNTHASE2 gene. Plant Sci 213(3):38–45

    Article  PubMed  CAS  Google Scholar 

  • Guo BJ, Wei YF, Xu RB, Lin S, Luan HY, Lv C, Zhang XZ, Song XY, Xu RG (2016) Genome-wide analysis of APETALA2/ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS ONE 11(9):e0161322. https://doi.org/10.1371/journal.pone.0161322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua W, Zhang Y, Song J, Zhao L, Wang Z (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98(4):272–279

    Article  CAS  Google Scholar 

  • Kai G, Xu H, Zhou C, Pan L, Xiao J, Luo X, You L, Zhang L (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13(3):319–327

    Article  PubMed  CAS  Google Scholar 

  • Li X (2011) A transient expression assay using Arabidopsis mesophyll protoplasts. Bio-protocol/BIO 101:e70. https://doi.org/10.21769/bioprotoc.70

    Article  Google Scholar 

  • Li X, Xue ZP, Zhu WX (2011) Antioxidant activities and contents of total flavonoids and phenols from different parts of Salvia miltiorrhiza bunge. Food Sci 32(3):108–111

    Google Scholar 

  • Li B, Wang B, Li H, Liang P, Mei R, Liang Z, Yan X, Zhu Y (2016a) Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation. Protoplasma 253(1):87–100

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wang J, Lei M, Li L, Fu Y, Wang Z, Ao M, Li Z (2016b) Transcriptome analysis of storage roots and fibrous roots of the traditional medicinal herb Callerya speciosa (Champ.) ScHot. PLoS ONE 11(8):e0160338. https://doi.org/10.1371/journal.pone.0160338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Cui GH, Shen GA, Zhan ZL, Huang LQ, Chen JC, Qi XQ (2017) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7:43320. https://doi.org/10.1038/srep43320

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16(12):3386–3399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Ludidi NN (2004) Characterization of two Arabidopsis thaliana genes with roles in plant homeostasis. Dissertation, Cape Town University of the Western Cape. http://hdl.handle.net/11394/14602

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramadan AM, Eissa HF, El-Domyati FM, Saleh OM, Ibrahim NE, Salama M, Mahfouz MM, Bahieldin A (2011) Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS -transgenic wheat. Plant Cell Tissue Organ Cult 107(3):373–381

    Article  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379(6):633–646

    PubMed  CAS  Google Scholar 

  • Scarpeci TE, Frea VS, Zanor MI, Valle EM (2017) Overexpression of AtERF019 delays plant growth and senescence and improves drought tolerance in Arabidopsis. J Exp Bot 68(3):673–685

    PubMed  CAS  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17(8):2384–2396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stork M (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20(9):2420–2436

    Article  CAS  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS ONE 6(9):e25216. https://doi.org/10.21371/journal.pone.0025216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang DL (1999) CO2 enrichment and allelopathy. Acta Ecol Sin 19(1):122–127

    CAS  Google Scholar 

  • Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol 88(2):437–449

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Morrisnatschke SL, Lee KH (2007) New developments in the chemistry and biology of the bioactive constituents of tanshen. Med Res Rev 27(1):133–148

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Du Y, Zhao X, Miao Y, Song CP (2013) The MPK6–ERF6–ROS-responsive cis-acting element 7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiol 161(3):1392–1408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Z, Peters RJ, Weirather J, Luo H, Liao B, Zhang X, Zhu Y, Ji A, Zhang B, Hu S (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82(6):951–961

    Article  PubMed  CAS  Google Scholar 

  • Xu HB, Song JY, Luo HM, Zhang YJ, Li QM et al (2016) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 9(6):949–952

    Article  PubMed  CAS  Google Scholar 

  • Yan XF, Yang W (2007) Plant secondary metabolism and its response to environment. Acta Ecol Sin 27(6):2554–2562

    Article  CAS  Google Scholar 

  • Yang D, Ma P, Liang X, Wei Z, Liang Z, Liu Y, Liu F (2012) PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots. Physiol Plant 146(2):173–183

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Zheng X, Fan T, Li Z, Zhang Y, Zheng J (2015) A novel drug discovery strategy inspired by traditional medicine philosophies. Science 347(6219 Suppl):S38–S40

    Google Scholar 

  • Zhou L, Dong C, Liu J (2011) Increased resistance of Arabidopsis to cold and salt stresses by suppressing the transcription repressors of the A-5 group among the DREB subfamily transcription factors through artificial microRNA. China Biotechnol 31(5):34–41

    Google Scholar 

Download references

Acknowledgements

We are grateful to professors Chao Sun, Shilin Chen and Weibo Jin for kindly providing the genome resources and transcriptome data of S. miltiorrhiza used in this study, respectively. We thanks for the supports from the National Natural Science Foundation of China (81773835, 81373908 and 81373536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongsuo Liang.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 Fig. S1 Promoter character analysis of SmCPS1 and SmKSL1 (TIFF 3180 kb)

425_2018_2884_MOESM2_ESM.tif

Supplementary material 2 Fig. S2 The minimal inhibitory concentration of Aureobasidin A (AbA) screens for the bait strain of the SmCPS1 and SmKSL1 promoter (TIFF 3681 kb)

425_2018_2884_MOESM3_ESM.tif

Supplementary material 3 Fig. S3 The Western-blotting analysis of MBP and SmERF6 and the precursor microRNA structure of amiR159b-SmERF6 (TIFF 1532 kb)

Supplementary material 4 Fig. S4 The phylogeny and characteristic analysis of SmERF6 (TIFF 12015 kb)

Supplementary material 5 (DOCX 15 kb)

Supplementary material 6 (DOCX 25 kb)

Supplementary material 7 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Li, W., Jia, Y. et al. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Planta 248, 243–255 (2018). https://doi.org/10.1007/s00425-018-2884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2884-z

Keywords

Navigation