Skip to main content
Log in

The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties.

Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°–24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adapa PK, Karunakaran C, Tabil LG, Schoenau GJ (2009) Potential applications of infrared and Raman spectromicroscopy for agricultural biomass. Agri Eng Int CIGR J XI:1081

    Google Scholar 

  • Agarwal UP (1999) An overview of Raman spectroscopy as applied to lignocellulosic materials. In: Argyropoulos DS (ed) Advances in lignocellulosics characterization. Tappi Press, pp 201–225

  • Agarwal UP, Terashima N (2003) FT-Raman study of dehydrogenation polymer (DHP) lignins. In: Proceedings of 12th International Symposium Wood Pulping Chemistry, Department of Forest Ecology and Management, University of Wisconsin Madison, WI, pp 123–126

  • Agarwal UP, Ralph SA, Atalla RH (1997) FT Raman spectroscopic study of softwood lignin. In: Proceedings of 9th international symposium on wood and pulping chemistry (ISWPC), Montreal, pp 8-1

  • Agarwal UP, McSweeny JD, Ralph SA (2011) FT–Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Technol 31:324–344

    Article  CAS  Google Scholar 

  • Awad H, Herbette S, Brunel N, Tixier A, Pilate G, Cochard H, Badel E (2012) No trade-off between hydraulic and mechanical properties in several transgenic poplars modified for lignins metabolism. Environ Exp Bot 77:185–195

    Article  CAS  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier M-T, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inze D (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baucher M, Monties B, Montagu MV, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197

    Article  CAS  Google Scholar 

  • Bjurhager I, Olsson A-M, Zhang B, Gerber L, Kumar M, Berglund LA, Burgert I, Br Sundberg, Salmén L (2010) Ultrastructure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromol 11:2359–2365

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Article  CAS  PubMed  Google Scholar 

  • Burgert I, Frühmann K, Keckes J, Fratzl P, Stanzl-Tschegg SE (2003) Microtensile testing of wood fibers combined with video extensometry for efficient strain detection. Holzforschung 57:661–664

    Article  CAS  Google Scholar 

  • Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2(4):268–278

    Article  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DC, Jarvis M (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Donaldson L (2008) Microfibril angle: measurement, variation and relationships–A review. Iawa J 29:345

    Article  Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung-Int J Biol Chem Phys Technol Wood 45:21–28

    CAS  Google Scholar 

  • Forbes JC, Watson D (1992) Plants in agriculture. Cambridge University Press, Cambridge

    Google Scholar 

  • Gierlinger N (2014) Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA). Front Plant Sci 5:306

    Article  PubMed  PubMed Central  Google Scholar 

  • Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7:1694–1708

    Article  CAS  PubMed  Google Scholar 

  • Gierlinger N, Keplinger T, Harrington M, Schwanninger M (2013) Raman imaging of lignocellulosic feedstock. In: Ven Tvd, Kadla J (eds) Cellulose–biomass conversion. INTECH, pp 159–192

  • Gorisek Z, Torelli N, Vilhar B, Grill D, Guttenberger H (1999) Microfibril angle in juvenile, adult and compression wood of spruce and silver fir. PHYTON-HORN 39:129–132

    Google Scholar 

  • Halpin C, Knight ME, Foxon GA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier MT, Schuch W (1994) Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J 6:339–350

    Article  CAS  Google Scholar 

  • Hepworth D, Vincent J (1998) The mechanical properties of xylem tissue from tobacco plants (Nicotiana tabacum ‘Samsun’). Ann Bot 81:751–759

    Article  Google Scholar 

  • Horvath B, Peralta P, Peszlen I, Divos F, Kasal B, LaiGeng L (2010) Elastic modulus of transgenic aspen. Wood Res (Bratisl) 55:1–10

    Google Scholar 

  • Hu W-J, Harding SA, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Qin Z, Buehler MJ (2015) Molecular deformation mechanisms of the wood cell wall material. J Mech Behav Biomed Mat 42:198–206

    Article  CAS  Google Scholar 

  • Kačuráková M, Belton PS, Wilson RH, Hirsch J, Ebringerová A (1998) Hydration properties of xylan-type structures: an FTIR study of xylooligosaccharides. J Sci Food Agric 77:38–44

    Article  Google Scholar 

  • Köhler L, Spatz H-C (2002) Micromechanics of plant tissues beyond the linear-elastic range. Planta 215:33–40. https://doi.org/10.1007/s00425-001-0718-9

    Article  PubMed  Google Scholar 

  • Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leplé J-C, Boerjan W, Ferret V, De Nadai V (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen KL, Barsberg S (2010) Theoretical and Raman spectroscopic studies of phenolic lignin model monomers. J Phys Chem B 114:8009–8021

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang P, Kim JI, Zhang D, Xia Y, Chapple C, Cheng J-X (2015) Vibrational fingerprint mapping reveals spatial distribution of functional groups of lignin in plant cell wall. Anal Chem 87:9436–9442

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie-Helnwein P, Müllner HW, Eberhardsteiner J, Mang HA (2005) Analysis of layered wooden shells using an orthotropic elasto-plastic model for multi-axial loading of clear spruce wood. Comput Methods Appl Mech Eng 194:2661–2685. https://doi.org/10.1016/j.cma.2004.07.051

    Article  Google Scholar 

  • Özparpucu M, Rüggeberg M, Gierlinger N, Cesarino I, Vanholme R, Boerjan W, Burgert I (2017) Unravelling the impact of lignin on cell wall mechanics—a comprehensive study on young poplar trees downregulated for cinnamyl alcohol dehyrogenase (CAD). Plant J 91:480–490

    Article  PubMed  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J-C, Pollet B, Mila I, Webster EA, Marstorp HG (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  CAS  PubMed  Google Scholar 

  • Rowell RM (2012) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton

    Book  Google Scholar 

  • Rüggeberg M, Speck T, Paris O, Lapierre C, Pollet B, Koch G, Burgert I (2008) Stiffness gradients in vascular bundles of the palm Washingtonia robusta. Proceed R Soc B Biol Sci 275:2221–2229

    Article  Google Scholar 

  • Rüggeberg M, Saxe F, Metzger TH, Sundberg B, Fratzl P, Burgert I (2013) Enhanced cellulose orientation analysis in complex model plant tissues. J Struct Biol 183:419–428

    Article  PubMed  Google Scholar 

  • Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: Wood machining–micromechanics and fracture. Holzforschung 63:121–129

    Article  Google Scholar 

  • Schwanninger M, Rodrigues J, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Speck T, Burgert I (2011) Plant stems: functional design and mechanics. Annu Rev Mater Res 41:169–193

    Article  CAS  Google Scholar 

  • Sun L, Varanasi P, Yang F, Loqué D, Simmons BA, Singh S (2012) Rapid determination of syringyl: Guaiacyl ratios using FT-Raman spectroscopy. Biotechnol Bioeng 109:647–656

    Article  CAS  PubMed  Google Scholar 

  • Van Acker R, Leplé J-C, Aerts D, Storme V, Goeminne G, Ivens B, Légée F, Lapierre C, Piens K, Van Montagu MC (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci 111:845–850

    Article  PubMed  Google Scholar 

  • Van Acker R, Déjardin A, Desmet S, Vanholme R, Morreel K, Laurans F, Kim H, Santoro N, Foster C, Goeminne G, Légée F, Lapierre C, Pilate G, Ralph J, Boerjan W (2017) Different metabolic routes for coniferaldehyde and sinapaldehyde with CINNAMYL ALCOHOL DEHYDROGENASE1 deficiency. Plant Physiol 175(3):1018–1039. https://doi.org/10.1104/pp.17.00834

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285. https://doi.org/10.1016/j.pbi.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  • Vargas L, Cesarino I, Vanholme R, Voorend W, Saleme MdLS, Morreel K, Boerjan W (2016) Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants. Biotechnol Biofuels 9:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Strauss SH (2011) Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytol 189:1096–1109. https://doi.org/10.1111/j.1469-8137.2010.03572.x

    Article  PubMed  Google Scholar 

  • Zobel BJ, Van Buijtenen JP (2012) Wood variation: its causes and control. Springer Science & Business Media, Berlin

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Agency for Innovation by Science and Technology (IWT) through the SBO project BIOLEUM (Grant no. 130039) and the SBO-FISH project ARBOREF (Grant no. 140894), and the European Framework Project MultiBioPro (project number: 311804). R. V. is indebted to the Research Foundation Flanders for a postdoctoral fellowship. N. G. acknowledges funding by the Austrian Science Fund (START-project SURFINPLANT Y-728-316) and the European community (ERC-consolidator grant SCATAPNUT 681885).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rüggeberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özparpucu, M., Gierlinger, N., Burgert, I. et al. The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars. Planta 247, 887–897 (2018). https://doi.org/10.1007/s00425-017-2828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2828-z

Keywords

Navigation