Skip to main content
Log in

PpORS, an ancient type III polyketide synthase, is required for integrity of leaf cuticle and resistance to dehydration in the moss, Physcomitrella patens

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

PpORS knockout mutants produced abnormal leaves with increased dye permeability and were more susceptible to dehydration, consistent with PpORS products being constituents of a cuticular structure in the moss.

Type III polyketide synthases (PKSs) have co-evolved with terrestrial plants such that each taxon can generate a characteristic collection of polyketides, fine-tuned to its needs. 2ʹ-Oxoalkylresorcinol synthase from Physcomitrella patens (PpORS) is basal to all plant type III PKSs in phylogenetic trees and may closely resemble their most recent common ancestor. To gain insight into the roles that ancestral plant type III PKSs might have played during early land plant evolution, we constructed and phenotypically characterized targeted knockouts of PpORS. Ors gametophores, unless submerged in water while they were developing, displayed various leaf malformations that included grossly misshapen leaves, missing or abnormal midribs, multicellular protuberances and localized necrosis. Ors leaves, particularly abnormal ones, showed increased permeability to the hydrophilic dye, toluidine blue. Ors gametophores lost water faster and were more susceptible to dehydration than those of the control strain. Our findings are consistent with ors leaves possessing a partially defective cuticle and implicate PpORS in synthesis of the intact cuticle. PpORS orthologs are present in a few moss species but have not been found in other plants. However, conceivably an ancestral ORS in early land plants may have contributed to their protection from dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Paba:

p-Aminobenzoic acid

PKS:

Polyketide synthase

PpORS:

2ʹ-Oxoalkylresorcinol synthase from Physcomitrella patens

TB:

Toluidine blue O

References

  • Abe I, Morita H (2010) Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat Prod Rep 27:809–838

    Article  CAS  PubMed  Google Scholar 

  • Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  • Ashton NW, Schulze A, Hall P, Bandurski RS (1985) Estimation of indole-3-acetic acid in gametophytes of the moss, Physcomitrella patens. Planta 164:142–144

    Article  CAS  Google Scholar 

  • Ashton NW, Champagne CEM, Weiler T, Verkoczy LK (2000) The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytol 146:391–402

    Article  Google Scholar 

  • Barker EI, Ashton NW (2013) Heteroblasty in the moss, Aphanoregma patens (Physcomitrella patens), results from progressive modulation of a single fundamental leaf developmental programme. J Bryol 35:185–196

    Article  Google Scholar 

  • Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, Napier JA, Kunst L (2009) Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerhues L, Liu B (2009) Biosynthesis of biphenyls and benzophenones—evolution of benzoic acid-specific type III polyketide synthases in plants. Phytochemistry 70:1719–1727

    Article  CAS  PubMed  Google Scholar 

  • Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    Article  CAS  PubMed  Google Scholar 

  • Buda GJ, Barnes WJ, Fich EA, Park S, Yeats TH, Zhao L, Domozych DS, Rose JK (2013) An ATP binding cassette transporter is required for cuticular wax deposition and desiccation tolerance in the moss Physcomitrella patens. Plant Cell 25:4000–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccoritti R, Pasquini M, Sgrulletta D, Nocente F (2015) Effect of 5-n-alkylresorcinol extracts from durum wheat whole grain on the growth of fusarium head blight (FHB) causal agents. J Agric Food Chem 63:43–50

    Article  CAS  PubMed  Google Scholar 

  • Colpitts CC, Kim SS, Posehn SE, Jepson C, Kim SY, Wiedemann G, Reski R, Wee AGH, Douglas CJ, Suh D-Y (2011) PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. New Phytol 192:855–868

    Article  CAS  PubMed  Google Scholar 

  • Courtice GRM, Ashton NW, Cove DJ (1978) Evidence for the restricted passage of metabolites into the sporophyte of the moss, Physcomitrella patens. J Bryol 10:191–198

    Article  Google Scholar 

  • Daku RM, Rabbi F, Buttigieg J, Coulson IM, Horne D, Martens G, Ashton NW, Suh D-Y (2016) PpASCL, the Physcomitrella patens anther-specific chalcone synthase-like enzyme implicated in sporopollenin biosynthesis, is needed for integrity of the moss spore wall and spore viability. PLoS One 11:e0146817

    Article  PubMed  PubMed Central  Google Scholar 

  • Egener T, Granado J, Guitton M-C, Hohe A, Holtorf H, Lucht JM, Rensing SA, Schlink K, Schulte J, Schween G, Zimmermann S, Duwenig E, Rak B, Reski R (2002) High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol 2:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank W, Ratnadewi D, Reski R (2005) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220:384–394

    Article  CAS  PubMed  Google Scholar 

  • Funa N, Ozawa H, Hirata A, Horinouchi S (2006) Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci USA 103:6356–6361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funa N, Awakawa T, Horinouchi S (2007) Pentaketide resorcylic acid synthesis by type III polyketide synthase from Neurospora crassa. J Biol Chem 282:14476–14481

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Zhang D, Li X, Yang H, Wood AJ (2014) De novo assembly and characterization of the transcriptome in the desiccation-tolerant moss Syntrichia caninervis. BMC Res Notes 7:490

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao B, Zhang D, Li X, Yang H, Zhang Y, Wood AJ (2015) De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss Bryum argenteum following rehydration. BMC Genom 16:416

    Article  Google Scholar 

  • García S, García C, Heinzen H, Moyna P (1997) Chemical basis of the resistance of barley seeds to pathogenic fungi. Phytochemistry 44:415–418

    Article  PubMed  Google Scholar 

  • Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, de Azevedo SA, Heitz T, Douglas CJ, Legrand M (2010) Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22:4067–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimsley NH, Ashton NW, Cove DJ (1977) The production of somatic hybrids by protoplast fusion in the moss, Physcomitrella patens. Mol Gen Genet 154:97–100

    Article  CAS  Google Scholar 

  • Haapalainen AM, Meriläinen G, Wierenga RK (2006) The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem Sci 31:64–71

    Article  CAS  PubMed  Google Scholar 

  • Harrison CJ, Roeder AHK, Meyerowitz EM, Langdale JA (2009) Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Curr Biol 19:461–471

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Kim SY, Suh D-Y (2008) Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol Phylogenet Evol 49:691–701

    Article  CAS  PubMed  Google Scholar 

  • Kayashima Y, Katayanagi Y, Tanaka K, Fukutomi R, Hiramoto S, Imai S (2017) Alkylresorcinols activate SIRT1 and delay ageing in Drosophila melanogaster. Sci Rep 4:43679

    Article  Google Scholar 

  • Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, de Azevedo SA, Geoffroy P, Heintz D, Krahn D, Kaiser M, Kombrink E, Heitz T, Suh D-Y, Legrand M, Douglas CJ (2010) LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22:4045–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Colpitts CC, Wiedemann G, Jepson C, Rahimi M, Rothwell JR, McInnes AD, Hasebe M, Reski R, Sterenberg BT, Suh D-Y (2013) Physcomitrella PpORS, basal to plant type III polyketide synthases in phylogenetic trees, is a very long chain 2′-oxoalkylresorcinol synthase. J Biol Chem 288:2767–2777

    Article  CAS  PubMed  Google Scholar 

  • Knight C, Cove DJ, Boyd P, Ashton NW (1988) The isolation of biochemical and developmental mutants in Physcomitrella patens. In: Glime JM (ed) Methods in bryology. Hattori Botanical Laboratory, Nichinan, pp 47–58

    Google Scholar 

  • Kozubek A, Tyman JHP (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 99:1–26

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa M, Katsuyama Y, Funa N, Horinouchi S (2010) Alkylresorcylic acid synthesis by type III polyketide synthases from rice Oryza sativa. Phytochemistry 71:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Ramírez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijó JA, Becker JD (2016) A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants. Mol Plant 9:205–220

    Article  PubMed  Google Scholar 

  • Panikashvili D, Shi JX, Schreiber L, Aharoni A (2009) The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol 151:1773–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quilichini T, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182

    Article  CAS  PubMed  Google Scholar 

  • Renault H, Alber A, Horst NA, Lopes AB, Fich EA, Kriegshauser L, Wiedemann G, Ullmann P, Herrgott L, Erhardt M, Pineau E, Ehlting J, Schmitt M, Rose JKC, Reski R, Werck-Reichhart D (2017) A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat Commun 8:14713

    Article  PubMed  PubMed Central  Google Scholar 

  • Reusch RN, Sadoff HL (1983) Novel lipid components of the Azotobacter vinelandii cyst membrane. Nature 302:268–270

    Article  CAS  PubMed  Google Scholar 

  • Rivière C, Pawlusa AD, Mérillon J-M (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333

    Article  PubMed  Google Scholar 

  • Ross AB, Shepherd MJ, Schupphaus M, Sinclair V, Alfaro B, Kamal-Eldin A, Aman P (2003) Alkylresorcinols in cereals and cereal products. J Agric Food Chem 51:4111–4118

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev 10:555–566

    Article  CAS  PubMed  Google Scholar 

  • Schaefer DG, Zryd JP, Knight CD, Cove DJ (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226:418–424

    Article  CAS  PubMed  Google Scholar 

  • Schneider LM, Adamski NM, Christensen CE, Stuart DB, Vautrin S, Hansson M, Uauy C, von Wettstein-Knowles P (2016) The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J Exp Bot 67:2715–2730

    Article  CAS  PubMed Central  Google Scholar 

  • Seitz LM (1992) Identification of 5-(2-oxoalkyl)resorcinols and 5-(2-oxoalkenyl)resorcinols in wheat and rye grains. J Agric Food Chem 40:1541–1546

    Article  CAS  Google Scholar 

  • Shimizu Y, Ogata H, Goto S (2017) Type III polyketide synthases: functional classification and phylogenomics. ChemBioChem 18:50–65

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y (2004) A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J 37:139–146

    Article  CAS  PubMed  Google Scholar 

  • Voisin D, Nawrath C, Kurdyukov S, Franke RB, Reina-Pinto JJ, Efremova N, Will I, Schreiber L, Yephremov A (2009) Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator. PLoS Genet 5:e1000703

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace S, Fleming A, Wellman CH, Beerling DJ (2011) Evolutionary development of the plant and spore wall. AoB Plants 2011:plr027

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149:1739–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng H, Molina I, Shockey J, Browse J (2010) Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta 231:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Wyatt HDM, Ashton NW, Dahms TES (2008) Cell wall architecture of Physcomitrella patens is revealed by atomic force microscopy. Botany 86:385–397

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Sciences and Engineering Research Council of Canada Discovery Grants to NWA. (2982-2008) and D-YS. (262038-2013). LL, MA and FR were supported in part by University of Regina Graduate Scholarships. FR was a Saskatchewan Innovation Opportunity Graduate Scholarship recipient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Yeon Suh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Aslam, M., Rabbi, F. et al. PpORS, an ancient type III polyketide synthase, is required for integrity of leaf cuticle and resistance to dehydration in the moss, Physcomitrella patens . Planta 247, 527–541 (2018). https://doi.org/10.1007/s00425-017-2806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2806-5

Keywords

Navigation