Skip to main content
Log in

Transcriptomic changes in Echinochloa colona in response to treatment with the herbicide imazamox

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Presented here is the first Echinochloa colona leaf transcriptome. Analysis of gene expression before and after herbicide treatment reveals that E. colona mounts a stress response upon exposure to herbicide.

Herbicides are the most frequently used means of controlling weeds. For many herbicides, the target site is known; however, it is considerably less clear how plant gene expression changes in response to herbicide exposure. In this study, changes in gene expression in response to herbicide exposure in imazamox-sensitive (S) and- resistant (R) junglerice (Echinochloa colona L.) biotypes was examined. As no reference genome is available for this weed, a reference leaf transcriptome was generated. Messenger RNA was isolated from imazamox-treated- and untreated R and S plants and the resulting cDNA libraries were sequenced on an Illumina HiSeq2000. The transcriptome was assembled, annotated, and differential gene expression analysis was performed to identify transcripts that were upregulated or downregulated in response to herbicide exposure for both biotypes. Differentially expressed transcripts included transcription factors, protein-modifying enzymes, and enzymes involved in metabolism and signaling. A literature search revealed that members of the families represented in this analysis were known to be involved in abiotic stress response in other plants, suggesting that imazamox exposure induced a stress response. A time course study examining a subset of transcripts showed that expression peaked within 4–12 h and then returned to untreated levels within 48 h of exposure. Testing of plants from two additional biotypes showed a similar change in gene expression 4 h after herbicide exposure compared to the resistant and sensitive biotypes. This study shows that within 48 h junglerice mounts a stress response to imazamox exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALS:

Acetolactate synthase

NIS:

Non-ionic surfactant

References

  • Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Comm 294:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • An J, Shen X, Ma Q, Yang C, Liu S, Chen Y (2014) Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.). PLOS One. doi:10.1371/journal/pone.0099940

    Google Scholar 

  • Avrova AO, Taleb N, Rokka V-M, Heilbronn J, Campbell E, Hein I, Gilroy EM, Cardle L, Bradshaw JE, Stewart HE, Fakim YJ, Loake G, Birch PRJ (2004) Potato oxysterol binding protein and cathepsin B are rapidly up-regulated in independent defense pathways that distinguish R gene-mediated and field resistances to Phytophthora infestans. Mol Plant Pathol 5:45–56

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Raychoudhuri A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560. doi:10.1155/2015/807560

    Article  Google Scholar 

  • Coll-Garcia D, Mazuch J, Altmann T, Mussig C (2004) EXORDIUM regulates brassinosteroid-responsive genes. FEBS Lett 563:82–86

    Article  CAS  PubMed  Google Scholar 

  • Das M, Reichman JR, Haberer G, Welzl G, Aceituno FF, Mader MT, Watrud LS, Pfleeger TG, Guiterrez RA, Schaffner AR, Olszyk DM (2010) A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus. Plant Mol Biol 72:545–556

    Article  CAS  PubMed  Google Scholar 

  • Duhoux A, Carrere S, Gouzy J, Bonin L, Delye C (2015) RNA-Seq analysis of rye-grass transcriptome response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Mol Biol 87:473–487

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, Ott MC, Han H, Busi R, Yu Z, Powles SB, Beffa R (2014) RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J 78:865–876

    Article  CAS  PubMed  Google Scholar 

  • Gardin JAC, Gouzy J, Carrere S, Delye C (2015) ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genom 16:590. doi:10.1186/s12864-015-1804-x

    Article  Google Scholar 

  • Ge L-F, Chao D-Y, Shi M, Zhu M-Z, Gao J-P, Lin H-X (2008) Overexpression of the trehalos-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    Article  CAS  PubMed  Google Scholar 

  • Gibson KD, Fischer AJ, Foin TC, Hill JE (2002) Implications of delayed Echinochloa spp. germination and duration of competition for integrated weed management in water-seeded rice. Weed Res 42:351–358

    Article  Google Scholar 

  • Grover A (2012) Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 31:57–73

    Article  CAS  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 81:494–512

    Google Scholar 

  • Heap I (2016) International survey of herbicide resistant weeds. http://www.weedscience.org. Accessed 28 Aug 2016

  • Hyodo H, Haxhimoto Ch, Morozumi S, Hu W, Tanaka K (1993) Characterization and induction of the activity of 1-aminocyclopropane-1-carboxylate oxidase in the wounded mesocarp tissue of Cucurbita maxima. Plant Cell Physiol 34:667–671

    Article  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Leslie T, Baucom RS (2014) De novo assembly and annotation of the transcriptome of the agricultural weed Ipomoea purpurea uncovers gene expression changes associated with herbicide resistance. G3 (Bethesda) 4:2035–2047

    Article  CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323–334

    Article  CAS  Google Scholar 

  • Li DY, Inoue H, Takahashi M, Kojima T, Shiraiwa M, Takahara H (2008) Molecular characterization of a novel salt-inducible gene for an OSBP (oxysterol-binding protein)-homologue from soybean. Gene 407:12–20

    Article  CAS  PubMed  Google Scholar 

  • Madhou P, Raghavan C, Wells A, Stevenson TW (2006) Genome-wide microarray analysis of the effect of a surfactant application in Arabidopsis. Weed Res 46:275–283

    Article  CAS  Google Scholar 

  • Manabe Y, Tinker N, Colville A, Miki B (2007) CSR1, the sole target of imidazolinone herbicide in Arabidopsis thaliana. Plant Cell Physiol 48:1340–1358

    Article  CAS  PubMed  Google Scholar 

  • Mitchell A, Chang H-Y, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong S-Y, Bateman A, Punta M, Attwood TK, Sigrist CJA, Redashi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale D, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43:D213–D221. doi:10.1093/nar/gku1243

    Article  PubMed  Google Scholar 

  • Mizutani M (2012) Impacts of diversification of cytochrome P450 on plant metabolism. Biol Pharm Bull 35:824–832

    Article  CAS  PubMed  Google Scholar 

  • Muenscher WC (1955) Weeds, 2nd edn. The Macmillan Company, New York

    Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharma Sci 27:587–593

    Article  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27. doi:10.1186/1471-2229-6-27

    Article  PubMed  PubMed Central  Google Scholar 

  • Riar DS, Norsworthy NK, Srivastava V, Nandula V, Bond JA, Scott RC (2013) Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J Agric Food Chem 61:278–289

    Article  CAS  PubMed  Google Scholar 

  • Ross J, Li Y, Lim E-K, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2(reviews3004):1. doi:10.1186/gb-2001-2-2-reviews3004

    Google Scholar 

  • Schindelman G, Morikami A, Jung J, Baskin TI, Carpia NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15:1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaner DL, Anderson PC, Stidham MA (1984) Imidazolinones: potential inhibitors of acetohydroxyacid synthase. Plant Physiol 76:545–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RJ (1968) Weed competition in rice. Weed Sci 16:252–255

    Google Scholar 

  • Song W-Y, Hortensteiner S, Tomioka R, Lee Y, Martinoia E (2011) Common functions or only phylogenetically related? The large family of PLAC8 motif-containing/PCR genes. Mol Cells 31:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X-L, Yu Q-Y, Tang L-L, Ji W, Bai X, Cai H, Liu X-F, Ding X-D, Zhu Y-M (2013) GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J Plant Physiol 170:505–515

    Article  CAS  PubMed  Google Scholar 

  • Walley JW, Kelley DR, Savchenko T, Dehesh K (2010) Investigating the function of CAF1 deadenylases during plant stress responses. Plant Signal Behav 5:802–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wen J-Q, Oono K, Imai R (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee D, Goring DR (2009) The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot 60:1109–1121

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Zhang S, Qing X, Sun M, Liu S, Su H, Shu H, Li X (2013) Superfamily of ankyrin repeat proteins in tomato. Gene 523:126–135

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Frontiers Plant Sci 6:600. doi:10.3389/fpls.2015.00600

    Google Scholar 

  • Zhu J, Patzoldt WL, Shealy RT, Vodkin LO, Clough SJ, Tranel PJ (2008) Transcriptome response to glyphosate in sensitive and resistant soybean. J Agric Food Chem 56:6355–6363

    Article  CAS  PubMed  Google Scholar 

  • Zulawski M, Schulze G, Braginets R, Hartman S, Schulze WX (2014) The Arabidopsis kinome: phylogeny and evolutionary insights into functional diversification. BMC Genom 15:548. doi:10.1186/1471-2164-15-548

    Article  Google Scholar 

Download references

Acknowledgements

Funding provided by BASF for the research is greatly appreciated. The authors appreciate the use of the facilities and equipment at USDA-ARS for this research. The authors would like to thank Dr. Chuan-yu Hsu for assistance in optimizing the RNA extraction protocol and Linda Ballard and Dr. Brian Scheffler for their assistance in submitting the transcriptome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice A. Wright.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14247 kb)

Supplementary material 2 (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, A.A., Sasidharan, R., Koski, L. et al. Transcriptomic changes in Echinochloa colona in response to treatment with the herbicide imazamox. Planta 247, 369–379 (2018). https://doi.org/10.1007/s00425-017-2784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2784-7

Keywords

Navigation