Skip to main content
Log in

Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main Conclusion

Loss of function mutation of rice OsACOS12 impairs lipid metabolism-mediated anther cuticle and pollen wall formation, and interferes with tapetum programmed cell death, leading to male sterility.

Acyl-CoA Synthetase (ACOS) is one of the enzymes activating fatty acids for various metabolic functions in plants. Here, we show that OsACOS12, an orthologue of Arabidopsis ACOS5 in rice, is crucial for rice fertility. Similar to acos5, osaocs12 mutant had no mature pollen. But unlike acos5, osaocs12 produced defective anthers lacking cutin and Ubisch bodies on the epidermal and inner surfaces, respectively, and delayed programmed cell death (PCD)-induced tapetum degradation. Those phenotypic changes were evident at stage 10, during which OsACOS12 had its maximum expression in tapetal cells and microspores. Chemical analysis revealed that the levels of anther cuticular lipid components (wax and cutin monomers) were significantly reduced in osaocs12, while the expression levels of three known lipid biosynthetic genes were unchanged. Recombinant OsACOS12 enzyme was shown to catalyze the conversion of C18:1 fatty acid to C18:1 CoA in vitro. Phylogenetic analysis indicated that OsACOS12 is an ancient and conserved enzyme associated with the plant’s colonization to earth. Collectively, our study suggests that OsACOS12 is an ancient enzyme participating in a conserved metabolic pathway for diversified biochemical functions to secure male reproduction in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

FID:

Flame ionization detector

GC–MS:

Gas chromatography–mass spectrometry

GUS:

β-Glucuronidase

PCD:

Programmed cell death

HPLC–MS/MS:

High-performance liquid chromatography–mass spectrometer/mass spectrometry

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

References

  • Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Ann Rev Plant Biol 62:437–460

    Article  CAS  Google Scholar 

  • Bolaños-Villegas P, Yang X, Wang HJ, Juan CT, Chuang MH, Makaroff CA, Jauh GY (2013) Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis. Plant J 75:927–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Chu H, Yuan Z, Pan A, Liang W, Huang H, Shen M, Zhang D, Chen L (2006) Isolation and genetic analysis for rice mutants treated with 60 Co γ-Ray. J Xiamen Univ 45:82–85

    Google Scholar 

  • Chen W, Yu XH, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D (2011) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157:842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y (2011) An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J 65:181–193

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo Souza C, Barbazuk B, Ralph S, Bohlmann J, Hamberger B, Douglas C (2008) Genome-wide analysis of a land plant-specific acyl:coenzyme A synthetase (ACS) gene family in Arabidopsis, poplar, rice and Physcomitrella. New Phytol 179:987–1003

    Google Scholar 

  • de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ (2009) A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21:507–525

    Article  Google Scholar 

  • Dobritsa AA, Shrestha J, Morant M, Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Møller LB, Preuss D (2009) CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández Gómez J, Talle B, Wilson Z (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57(11):876–891

    Article  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez J, Talle B, Wilson Z (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57:876–891

    Article  PubMed  PubMed Central  Google Scholar 

  • Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, de Azevedo Souza C, Heitz T, Douglas CJ, Legrand M (2010) Analysis of TETRAKETIDE alpha-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22:4067–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ischebeck T (2016) Lipids in pollen—they are different. Biochem Biophys Acta 1861:1315–1328

    CAS  PubMed  Google Scholar 

  • Jiang J, Zhang Z, Cao J (2013) Pollen wall development: the associated enzymes and metabolic pathways. Plant Biol 15:249–263

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Han MJ, Lee DY et al (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SS, Grienenberger E, Lallemand B et al (2010) LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl alpha-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22:4045–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallemand B, Erhardt M, Heitz T, Legrand M (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang D (2010) Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav 5:1121–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Zhang DS, Liu HS et al (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Pinot F, Sauveplane V et al (2010) Cytochrome P450 family member CYP704B2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C (2011) Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-box adenosine 5′-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23(4):1416–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li D, Guo Z, Shi Q, Xiong S, Zhang C, Zhu J, Yang Z (2016) OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC Plant Biol 16:256

    Article  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F et al (2010) Acyl-lipid metabolism. Arabidopsis Book 11:e0161

    Article  Google Scholar 

  • Lin Y (2012) Functional analysis of anther-specific genes essential for pollen exine development and male fertility in tobacco. Ph. D thesis from The University of Hong Kong

  • Morant M, Jorgensen K, Schaller H, Pinot F, Moller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445

    Article  PubMed  Google Scholar 

  • Parish R, Li S (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178:73–89

    Article  CAS  Google Scholar 

  • Parish R, Phan H, Iacuone S, Li S (2012) Tapetal development and abiotic stress: a centre of vulnerability. Funct Plant Biol 39:553–559

    Article  CAS  Google Scholar 

  • Qin M, Tian T, Xia S, Wang Z, Song L, Yi B, Wen J, Shen J, Ma C, Fu T, Tu J (2016) Heterodimer formation of BnPKSA or BnPKSB with BnACOS5 constitutes a multienzyme complex in tapetal cells and is involved in male reproductive development in Brassica napus. Plant Cell Physiol 57:1643–1656

    Article  CAS  PubMed  Google Scholar 

  • Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Tan H, Yu XH et al (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23:2225–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Cui M, Yang L, Zhang D (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–753

    Article  CAS  PubMed  Google Scholar 

  • Shockey J, Browse J (2011) Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. Plant J 66:143–160

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Liang W, Hu J, Zhang D (2012) MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Dev Cell 22:1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Varbanova M, Atanassov A, Atanassov I (2003) Anther-specific coumarate CoA ligase-like gene from Nicotiana sylvestris expressed during uninucleate microspore development. Plant Sci 164:525–530

    Article  CAS  Google Scholar 

  • Wallace S, Chater CC, Kamisugi Y, Cuming AC, Wellman CH, Beerling DJ, Fleming AJ (2015) Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway. New Phytol 205:390–401

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin YC, So J, Du Y, Lo C (2013) Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice. Physiol Plant 149:13–24

    Article  CAS  PubMed  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224

    Article  CAS  PubMed  Google Scholar 

  • Weng H, Molina I, Shockey J, Browse J (2010) Organ fusion and defective cuticle function in a lacs1lacs2 double mutant of Arabidopsis. Planta 231(5):1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang D (2014) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26:1544–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wu D, Shi J et al (2014) Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol 56:979–994

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Wei J, Zhang F, Zhou S, Zhang W (2011) Expression analysis of anACOS5 rice homologue in floret. J Shanghai Norm Univ (Nat Sci) 40:244–248

    Google Scholar 

  • Zhang D, Wilson ZA (2009) Stamen specification and anther development in rice. Chin Sci Bull 54:2342–2353

    Article  CAS  Google Scholar 

  • Zhang H, Liang WQ, Yang XJ, Luo X, Jiang N, Ma H, Zhang DB (2010) Carbon Starved Anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22:672–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genom 38:379–390

    Article  CAS  Google Scholar 

  • Zhang D, Shi J, Yang X (2016) Role of lipid metabolism in plant pollen exine development. In: Nakamura Y, Li-Beisson Y, eds. Lipids in plant and algae development. Springer, Geneva, pp 315–337

  • Zhao G, Shi J, Liang W, Xue F, Luo Q, Zhu L, Qu G, Chen M, Schreiber L, Zhang D (2015) Two ATP Binding Cassette G (ABCG) transporters, OsABCG26 and OsABCG15, collaboratively regulate rice male reproduction. Plant Physiol 169:2064–2079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Shi J, Zhao G, Zhang D, Liang W (2013) Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J Plant Biol 56:59–68

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lu Zhu (Shanghai Jiao Tong University, SJTU) for help in electron microscopy, Dr. Guorun Qu and Ms. Qian Luo (SJTU) for help in wax and cutin analysis. We appreciate very much to Dr. Sheng Quan (from the SJTU-Metabolon Joint Metabolomics Laboratory) for his critical reading and editing of the Manuscript. This work was supported by funds from the National Key Research and Development Program of China (2016YFD0101107); National Key Technologies Research and Development Program of China (2016YFD0100804); China Innovative Research Team, Ministry of Education, and the Programme of Introducing Talents of Discipline to Universities (111 Project, B14016); The Science and Technology Commission of Shanghai Municipality (13JC1408200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Shi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liang, W., Chen, M. et al. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility. Planta 246, 105–122 (2017). https://doi.org/10.1007/s00425-017-2691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2691-y

Keywords

Navigation