Skip to main content
Log in

Cadmium activates both diphenyleneiodonium- and rotenone-sensitive superoxide production in barley root tips

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Mild Cd stress-activated diphenyleneiodonium-sensitive superoxide production is utilized in root morphogenic responses, while severe Cd stress-induced robust rotenone-sensitive superoxide generation may lead to cell and root death.

In barley, even a few minute exposure of roots to Cd concentration higher than 10 µM evoked a strong superoxide generation in the root transition zone. This superoxide generation was strongly inhibited by the inhibition of mitochondrial electron flow into complex III in the presence of the mitochondrial complex I inhibitor rotenone. Similarly, the superoxide generation induced by antimycin A, an inhibitor of mitochondrial complex III, was considerably reduced by rotenone, suggesting the involvement of complex III also in the severe Cd stress-induced superoxide generation. This severe Cd stress-induced superoxide generation was followed by an extensive cell death in this part of the root tip, which similar to the superoxide generation, was eliminated by rotenone co-treatment. In turn, mild Cd stress-induced diphenyleneiodonium (DPI)-sensitive superoxide generation was observed only in the post-stressed roots, suggesting that it is not directly associated with Cd toxicity. Diphenyleneiodonium, an inhibitor of NADPH oxidase, markedly inhibited the mild Cd stress-induced radial expansion of root apex, indicating that enhanced DPI-sensitive superoxide production is required for rapid isotropic cell growth. Severe Cd stress, probably through the inhibition of complex III, caused a rapid and robust superoxide generation leading to cell and/or root death. By contrast, mild Cd stress did not evoke oxidative stress, and the enhanced DPI-sensitive superoxide generation is utilized in adaptive morphogenic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DPI:

Diphenyleneiodonium

NOX:

NADPH oxidase

mROS:

Mitochondrial ROS

ROS:

Reactive oxygen species

References

  • Alemayehu A, Bočová B, Zelinová V, Mistrík I, Tamás L (2013) Enhanced lipoxygenase activity is involved in barley root tip swelling induced by cadmium, auxin or hydrogen peroxide. Environ Exp Bot 93:55–62

    Article  CAS  Google Scholar 

  • Amirsadeghi S, Robson CA, Vanlerberghe GC (2007) The role of the mitochondrion in plant responses to biotic stress. Physiol Plant 129:253–266

    Article  CAS  Google Scholar 

  • Bi YH, Chen WL, Zhang WN, Zhou Q, Yun LJ, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biol Cell 101:629–643

    Article  CAS  PubMed  Google Scholar 

  • Castro-Guerrero NA, Rodríguez-Zavala JS, Marín-Hernández A, Rodríguez-Enríquez S, Moreno-Sánchez R (2008) Enhanced alternative oxidase and antioxidant enzymes under Cd2+ stress in Euglena. J Bioenerg Biomembr 40:227–235

    Article  CAS  PubMed  Google Scholar 

  • Chang H-B, Lin C-W, Huang H-J (2005) Zinc-induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regul 46:261–266

    Article  CAS  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria. Central role of complex III. J Biol Chem 278:36027–36031

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bak J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245

    PubMed  PubMed Central  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    Article  CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–693

    Article  CAS  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu C, Chétrit P, Foyer CH, de Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz K-J (2005) The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J Biol Chem 280:12168–12180

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Allen JF (2003) Lessons from redox signalling in plants. Antioxid Redox Sign 5:3–5

    Article  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Garmier M, Carroll AJ, Delannoy E, Vallet C, Day DA, Small ID, Millar AH (2008) Complex I dysfunction redirects cellular and mitochondrial metabolism in Arabidopsis. Plant Physiol 148:1324–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel J-P, Blein J-P, Ranjeva R, Montillet J-L (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  CAS  PubMed  Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    Article  CAS  PubMed  Google Scholar 

  • Hernández JA, Corpas FJ, Gómez M, del Río LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in leaf mitochondria. Physiol Plant 89:103–110

    Article  Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699

    Article  CAS  PubMed  Google Scholar 

  • Jakubowska D, Janicka-Russak M, Kabala K, Migocka M, Reda M (2015) Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress. Plant Sci 234:50–59

    Article  CAS  PubMed  Google Scholar 

  • Jones RD, Hancock JT, Morice AH (2000) NADPH oxidase: a universal oxygen sensor? Free Rad Biol Med 29:416–424

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert AJ, Buckingham JA, Boysen HM, Brand MD (2008) Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochim Biophys Acta 1777:397–403

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Trush MA (1998) Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Bioph Res Co 253:295–299

    Article  CAS  Google Scholar 

  • Li Z, Xing D (2011) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. J Exp Bot 62:331–343

    Article  CAS  PubMed  Google Scholar 

  • Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) DPI induces mitochondrial superoxide-mediated apoptosis. Free Rad Biol Med 34:465–477

    Article  PubMed  Google Scholar 

  • Liptáková Ľ, Bočová B, Huttová J, Mistrík I, Tamás L (2012) Superoxide production induced by short-term exposure of barley roots to cadmium, auxin, alloxan and sodium dodecyl sulfate. Plant Cell Rep 31:2189–2197

    Article  PubMed  Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signalling for acclimation or cell death? Plant Physiol 154:521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Nordberg GF (2004) Cadmium and health in the 21st Century—historical remarks and trends for the future. Biometals 17:485–489

    Article  CAS  PubMed  Google Scholar 

  • Olmos E, Martínez-Solano JR, Piqueras A, Hellín E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signalling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riganti C, Gazzano E, Polimeni M, Costamagna C, Bosia A, Ghigo D (2004) Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. J Biol Chem 279:47726–47731

    Article  CAS  PubMed  Google Scholar 

  • Schwarzländer M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta 1787:468–475

    Article  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    Article  CAS  PubMed  Google Scholar 

  • Smiri M, Chaoui A, Rouhier N, Kamel C, Gelhaye E, Jacquot J-P, El Ferjani E (2010) Cadmium induced mitochondrial redox changes in germinating pea seed. Biometals 23:973–984

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  CAS  PubMed  Google Scholar 

  • Szal B, Drozd M, Rychter AM (2004) Factors affecting determination of superoxide anion generated by mitochondria from barley roots after anaerobiosis. J Plant Physiol 161:1339–1346

    Article  CAS  PubMed  Google Scholar 

  • Tamás L, Mistrík I, Huttová J, Halušková Ľ, Valentovičová K, Zelinová V (2010) Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip. Planta 231:221–231

    Article  PubMed  Google Scholar 

  • Tamás L, Bočová B, Huttová J, Liptáková Ľ, Mistrík I, Valentovičová K, Zelinová V (2012) Impact of the auxin signaling inhibitor p-chlorophenoxyisobutyric acid on short-term Cd-induced hydrogen peroxide production and growth response in barley root tip. J Plant Physiol 169:1375–1381

    Article  PubMed  Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A (2014) Low Cd concentration-activated morphogenic defense responses are inhibited by high Cd concentration-induced toxic superoxide generation in barley root tip. Planta 239:1003–1013

    Article  PubMed  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-yellow 2 cells. Plant Physiol 134:1100–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrablic AS, Albright CD, Craciunescu CN, Salganik RI, Zeisel SH (2001) Altered mitochondrial function and overgeneration of reactive oxygen species precede the induction of apoptosis by 1-O-octadecyl-2-methyl-rac-glycero-3-phosphocholine in p53-defective hepatocytes. FASEB J 15:1739–1744

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Fang J, Leonard SS, Rao KMK (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Rad Biol Med 36:1434–1443

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Henmi K, Ogawa K, Suzuki T (2003) Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. Comp Biochem Physiol C Toxicol Pharmacol 134:227–234

    Article  PubMed  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S (2002) Mitochondrial oxidative burst involved in apoptotic response in oats. Plant J 30:567–579

    Article  CAS  PubMed  Google Scholar 

  • Zelinová V, Alemayehu A, Bočová B, Huttová J, Mistrík I, Tamás L (2014) Primary stress response induced by different elements is mediated through auxin signalling in barley root tip. Acta Physiol Plant 36:2935–2946

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency VEGA, project No. 2/0039/16. The authors also thank the anonymous reviewers for their helpful criticisms, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Tamás.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamás, L., Mistrík, I. & Zelinová, V. Cadmium activates both diphenyleneiodonium- and rotenone-sensitive superoxide production in barley root tips. Planta 244, 1277–1287 (2016). https://doi.org/10.1007/s00425-016-2587-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2587-2

Keywords

Navigation