Skip to main content
Log in

Fine structure of the Arabidopsis stem cuticle: effects of fixation and changes over development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The Arabidopsis cuticle, as observed by electron microscopy, consists primarily of the cutin/cutan matrix. The cuticle possesses a complex substructure, which is correlated with the presence of intracuticular waxes.

The plant cuticle is composed of an insoluble polyester, cutin, and organic solvent soluble cuticular waxes, which are embedded within and coat the surface of the cutin matrix. How these components are arranged in the cuticle is not well understood. The Arabidopsis cuticle is commonly understood as ‘amorphous,’ lacking in ultrastructural features, and is often observed as a thin (~80–100 nm) electron-dense layer on the surface of the cell wall. To examine this cuticle in more detail, we examined cuticles from both rapidly elongating and mature sections of the stem and compared the preservation of the cuticles using conventional chemical fixation methods and high-pressure freezing/freeze-substitution (HPF/FS). We found that HPF/FS preparation revealed a complex cuticle substructure, which was more evident in older stems. We also found that the cuticle increases in thickness with development, indicating an accretion of polymeric material, likely in the form of the non-hydrolyzable polymer, cutan. When wax was extracted by chloroform immersion prior to sample preparation, the contribution of waxes to cuticle morphology was revealed. Overall, the electron-dense cuticle layer was still visible but there was loss of the cuticle substructure. Furthermore, the cuticle of cer6, a wax-deficient mutant, also lacked this substructure, suggesting that these fine striations were dependent on the presence of cuticular waxes. Our findings show that HPF/FS preparation can better preserve plant cuticles, but also provide new insights into the fine structure of the Arabidopsis cuticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FS:

Freeze-substitution

HPF:

High-pressure freezing

TEM:

Transmission electron microscopy

References

  • Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498. doi:10.1111/j.1365-313X.2007.03252.x

    Article  CAS  PubMed  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschhaus C, Jetter R (2011) Composition differences between epicuticular and intracuticular wax substructures: How do plants seal their epidermal surfaces? J Exp Bot 62:841–853

    Article  CAS  PubMed  Google Scholar 

  • Buschhaus C, Jetter R (2012) Composition and physiological function of the wax layers coating Arabidopsis leaves: beta-amyrin negatively affects the intracuticular water barrier. Plant Physiol 160:1120–1129. doi:10.1104/pp.112.198473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JL, Fujita A, Ohsaki Y, Suzuki M, Shinohara Y, Fujimoto T (2009) Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets. Histochem Cell Biol 132:281–291. doi:10.1007/s00418-009-0615-z

    Article  CAS  PubMed  Google Scholar 

  • Comménil P, Brunet L, Audran J-C (1997) The development of the grape berry cuticle in relation to susceptibility to bunch rot disease. J Exp Bot 48:1599–1607

    Article  Google Scholar 

  • Dahl R, Staehelin LA (1989) High-pressure freezing for the preservation of biological structure–theory and practice. J Electron Micr Tech 13:165–174

    Article  CAS  Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffree CE (2006) The fine structure of the plant cuticle. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Annual Plant Reviews, vol. 23, Blackwell Publishing, Ames, Iowa, p 11–125

  • Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jetter R, Schaffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetter R, Schäffer S, Riederer M (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell Environ 23:619–628

    Article  CAS  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Annual Plant Reviews, vol. 23, Blackwell Publishing, Ames, Iowa, p 145–181

  • Kurdyukov S, Faust A, Nawrath C, Bar S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Metraux J-P, Yephremov A (2006a) The epidermis-specific extracellular bodyguard controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18:321–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurdyukov S, Faust A, Trenkamp S, Bar S, Franke R, Efremova N, Tietjen K, Schreiber L, Saedler H, Yephremov A (2006b) Genetic and biochemical evidence for involvement of HOTHEAD in the biosynthesis of long-chain alpha-, omega-dicarboxylic fatty acids and formation of extracellular matrix. Planta 224:315–329

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Beisson F, Koo AJK, Molina I, Pollard M, Ohlrogge J (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA 104:18339–18344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, Hofer R, Schreiber L, Chory J, Aharoni A (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145:1345–1360. doi:10.1104/pp.107.105676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard M, Beisson F, Li YH, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246. doi:10.1016/j.tplants.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  • Reed DW (1980) Wax alteration and extraction during electron microscopy preparation of leaf cuticles. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Linnean Society Symposium Series, vol.10, Academic Press, London

  • Rensing KH, Samuels AL, Savidge RA (2002) Ultrastructure of vascular cambial cell cytokinesis in pine seedlings preserved by cryofixation and substitution. Protoplasma 220:39–49

    Article  CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) Use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212. doi:10.1083/jcb.17.1.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riederer M (2006) Biology of the plant cuticle. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Annual Plant Reviews, vol. 23, Blackwell Publishing, Ames, Iowa, p 1–8

  • Schmidt HW, Schönherr J (1982) Development of plant cuticles–occurrence and role of non-ester bonds in cutin of Clivia miniata Reg. leaves. Planta 156:380–384. doi:10.1007/bf00397478

    Article  CAS  PubMed  Google Scholar 

  • Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 57:2471–2491. doi:10.1093/jxb/erj217

    Article  CAS  Google Scholar 

  • Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot-London 95:1069–1073. doi:10.1093/aob/mci122

    Article  Google Scholar 

  • Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Metraux J-P, Nawrath C (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12:721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark RE, Tian S (2006) The cutin biopolymer matrix. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Annual Plant Reviews, vol. 23, Blackwell Publishing, Ames, Iowa, p 126–144

  • Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 139:1649–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ukitsu H, Kuromori T, Toyooka K, Goto Y, Matsuoka K, Sakuradani E, Shimizu S, Kamiya A, Imura Y, Yuguchi M, Wada T, Hirayama T, Shinozaki K (2007) Cytological and biochemical analysis of COF1, an Arabidopsis mutant of an ABC transporter gene. Plant Cell Physiol 48:1524–1533. doi:10.1093/pcp/pcm139

    Article  CAS  PubMed  Google Scholar 

  • Villena JF, Dominguez E, Stewart D, Heredia A (1999) Characterization and biosynthesis of non-degradable polymers in plant cuticles. Planta 208:181–187. doi:10.1007/s004250050548

    Article  CAS  PubMed  Google Scholar 

  • Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy AA, Riederer M (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J Exp Bot 55:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Voisin D, Nawrath C, Kurdyukov S, Franke R, Reina-Pinto J, Efremova N, Will I, Schreiber L, Yephremov A (2009) Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator. PLoS Genet 5:1000703. doi:10.1371/journal.pgen.1000703

    Article  Google Scholar 

  • Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A (2001) Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega-hydroxylation in development. Proc Natl Acad Sci USA 98:9694–9699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao FM, Goodwin SM, Xiao YM, Sun ZY, Baker D, Tang XY, Jenks MA, Zhou JM (2004) Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to J. K. C. Rose and R. Jetter for valuable discussions and encouragement. We are further grateful to R. Jetter for reviewing the manuscript. This work was funded by NSERC Discovery grant (309189) awarded to DAB and (Grant No 229548) to ALS. We also extend our thanks for technical support from the UBC bioimaging facility. ALS and DAB conceived and designed the research. SJS and DAB conducted experiments. DAB analyzed the data and wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Bird.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2016_2549_MOESM1_ESM.tif

Supplementary material 1 Fig. S1 Arabidopsis stem sections prepared by HPF/FS and low temperature embedding. a 300-nm section stained with toluidine blue O stain. The embedding resin often separated from the tissue (arrow) and the epidermal cell wall was not properly preserved. Gaps in the resin between the cell wall and cytosol are often observed as well (asterisk). b TEM of a region similar to the box in a. The cuticle was not preserved in the section and gaps in the resin are often seen where the cuticle would be present (asterisk). Scale bars 5 μm (a) and 500 nm (b) (TIFF 2380 kb)

Supplementary material 2 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumborski, S.J., Samuels, A.L. & Bird, D.A. Fine structure of the Arabidopsis stem cuticle: effects of fixation and changes over development. Planta 244, 843–851 (2016). https://doi.org/10.1007/s00425-016-2549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2549-8

Keywords

Navigation