Skip to main content
Log in

Epigenetic regulation of MdMYB1 is associated with paper bagging-induced red pigmentation of apples

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 07 May 2016

Abstract

Main conclusion

Paper-bagging treatment can transform non-transcribed MdMYB1 - 2 and MdMYB1 - 3 alleles into transcribed alleles through epigenetic regulations, resulting in the red pigmentation of a normally non-red apple cultivar ‘Mutsu.’

Anthocyanin biosynthesis in apples is regulated by MdMYB1/A/10, an R2R3-Type MYB gene. ‘Mutsu,’ a triploid apple cultivar harboring non-transcribed MdMYB1-2 and MdMYB1-3 alleles, retains green skin color under field conditions. However, it can show red/pink pigmentation under natural or artificial ultraviolet-B (UV-B) light exposure after paper-bagging and bag removal treatment. In the present study, we found that in ‘Mutsu,’ paper bagging-induced red pigmentation was due to the activation of non-transcribed MdMYB1-2/-3 alleles, which triggered the expression of downstream anthocyanin biosynthesis genes in a UV-B-dependent manner. By monitoring the epigenetic changes during UV-B-induced pigmentation, no significant differences in DNA methylation and histone modifications in the 5′ upstream region of MdMYB1-2/-3 were recorded between the UV-B-treated fruit skin (red) and the fruit skin treated only by white light (green). In contrast, bag treatment lowered the DNA methylation in this region of MdMYB1-2/-3 alleles. Similarly, higher levels of histone H3 acetylation and trimethylation of H3 tail at lysine 4, and lower level of trimethylation of H3 tail at lysine 27 were observed in the 5′ upstream region of MdMYB1-2/-3 in the skin of the fruit immediately after bag removal. These results suggest that bagging treatment can induce epigenetic changes, facilitating the binding of trans factor(s) to MdMYB1-2/-3 alleles, resulting in the activation of these MYBs after bag removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANS:

Anthocyanin synthase

CHI:

Chalcone isomerase

ChIP:

Chromatin immunoprecipitation

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

F3H:

Flavanone-3β-hydroxylase

FL:

Fluorescent lamp

H3ac:

Acetylation of histone H3

H3K4me3 (H3K27me3):

Trimethylation of histone H3 at lysine 4 (at lysine 27)

SNP:

Single nucleotide polymorphism

UFGT:

UDP-glucose:flavonoid-3-O-glycosyltransferase

References

  • Arakawa O, Hori Y, Ogata R (1986) Characteristics of color development and relationship between anthocyanin synthesis and phenylalanine ammonia-lyase activity in ‘Starking Delicious’, ‘Fuji’ and ‘Mutsu’ apple fruits. J Jpn Soc Hortic Sci 54:424–430

    Article  CAS  Google Scholar 

  • Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T (2014) An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta 240:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  CAS  PubMed  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin in Plant Biol 8:272–279

    Article  CAS  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genom 8:212

    Article  Google Scholar 

  • Chagné D, Lin-Wang K, Espley RV, Volz RK, How NM, Rouse S, Brendolise C, Carlisle CM, Kumar S, De Silva N, Micheletti D, McGhie T, Crowhurst RN, Storey RD, Velasco R, Hellens RP, Gardiner SE, Allan AC (2013) An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161:225–239

    Article  PubMed  Google Scholar 

  • Chan SWL, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  CAS  PubMed  Google Scholar 

  • Charron JB, He H, Elling AA, Deng XW (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21:3732–3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GTJ, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    Article  CAS  PubMed  Google Scholar 

  • Cottage A, Edwards YJ, Elgar G (2001) SAND, a new protein family: from nucleic acid to protein structure and function prediction. Comp Funct Genomics 2:226–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng XW, Caspar T, Quail PH (1991) cop1—a regulatory locus involved in light-controlled development and gene-expression in Arabidopsis. Genes Dev 5:1172–1182

    Article  CAS  PubMed  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sharkawy, Liang D, Xu K (2015) Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot 66:7359–7376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Mattheis JP (1998) Bagging ‘Fuji’ apples during fruit development affects color development and storage quality. HortScience 33:1235–1238

    Google Scholar 

  • Gasic K, Hernandez A, Korban S (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437–438

    Article  CAS  Google Scholar 

  • Guo L, Zhou J, Elling AA, Charron J-B, Deng XW (2008) Histone modifications and expression of light-regulated genes in Arabidopsis are cooperatively influenced by changing light conditions. Plant Physiol 147:2070–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Ubi B, Saito T, Moriguchi T (2014) Evaluation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in Pyrus pyrifolia using different tissue samples and seasonal conditions. PLoS ONE 9:e86492

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang IC, Chung PJ, Hemmes H, Jung C, Chua NH (2011) Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus. Plant Cell 23:459–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Terakami S, Nishitani C, Kurita K, Kanamori H, Katayose Y, Sawamura Y, Saito T, Yamamoto T (2012) Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear. Breed Sci 62:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    Article  CAS  PubMed  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Che F, Wang L, Meng R, Zhang X, Zhao Z (2013) Fruit coloration and anthocyanin biosynthesis after bag removal in non-red and red apples (Malus × domestica Borkh.). Molecules 18:1549–1563

    Article  CAS  PubMed  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak MN, Melø TB, Naqvi KR (2008) Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection. J Exp Bot 59:349–359

    Article  CAS  PubMed  Google Scholar 

  • Mink G (1973) The apple industry in Japan. HortScience 8:81–86

    Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng T, Saito T, Honda C, Ban Y, Kondo S, Liu J, Hatsuyama Y, Moriguchi T (2013) Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation. Physiol Plant 148:432–444

    Article  CAS  PubMed  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schafer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Bai S, Ito A, Sakamoto D, Ubi B, Imai T, Moriguchi T (2013) Expression and genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiol 33:654–667

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Bai S, Imai T, Ito A, Nakajima I, Moriguchi T (2015) Histone modification and signaling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant Cell Environ 38:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Shibuya K, Fukushima S, Takatsuji H (2009) RNA-directed DNA methylation induces transcriptional activation in plants. Proc Natl Acad Sci USA 106:1660–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telias A, Lin-Wang K, Stevenson DE, Cooney JM, Hellens RP, Allan AC, Hoover EL, Bradeen JM (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Sci 170:571–578

    Article  CAS  Google Scholar 

  • Umemura H, Otagaki S, Wada M, Kondo S, Matsumoto S (2013) Expression and functional analysis of a novel MYB gene, MdMYB 110a_ JP, responsible for red flesh, not skin color in apple fruit. Planta 238:65–76

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang X, Liu Y, Shi X, Wang Y, Zhang C, Zhao Z (2013a) The effect of fruit bagging on the color, phenolic compounds and expression of the anthocyanin biosynthetic and regulatory genes on the ‘Granny Smith’ apples. Eur Food Res Technol 237:875–885

    Article  CAS  Google Scholar 

  • Wang Z, Meng D, Wang A, Li T, Jiang S, Cong P, Li T (2013b) The methylation of the PcMYB10 promoter is associated with green-skinned sport in max red bartlett pear. Plant Physiol 162:885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Feng S, Jiao Q, Liu C, Zhang W, Chen W, Chen X (2012) Comparison of MdMYB1 sequences and expression of anthocyanin biosynthetic and regulatory genes between Malus domestica Borkh. cultivar ‘Ralls’ and its blushed sport. Euphytica 185:157–170

    Article  CAS  Google Scholar 

  • Yang HX, Chang F, You CJ, Cui J, Zhu GF, Wang L, Zheng Y, Qi J, Ma H (2015) Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. Plant J 81:268–281

    Article  CAS  PubMed  Google Scholar 

  • Yonemori K (2009) Japanese pomological magic: producing fruits for gifts. Chron Hortic 49:15–18 

    Google Scholar 

  • Zhang XY, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen HM, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (No. 24·02214) from the Japanese Society for the Promotion of Science (JSPS). We thank Dr. Ken-ichi Shibuya for technical advice on chromatin immunoprecipitation sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaya Moriguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 755 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, S., Tuan, P.A., Saito, T. et al. Epigenetic regulation of MdMYB1 is associated with paper bagging-induced red pigmentation of apples. Planta 244, 573–586 (2016). https://doi.org/10.1007/s00425-016-2524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2524-4

Keywords

Navigation