Skip to main content
Log in

Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main Conclusion

A significant number of epigenetic regulators were differentially expressed during embryogenesis at different epitype-inducing conditions. Our results support that methylation of DNA and histones, as well as sRNAs, are pivotal for the establishment of the epigenetic memory.

As a forest tree species with long generation times, Norway spruce is remarkably well adapted to local environmental conditions despite having recently, from an evolutionary perspective, recolonized large areas following the last glaciation. In this species, there is an enigmatic epigenetic memory of the temperature conditions during embryogenesis that allows rapid adaptation to changing environment. We used a transcriptomic approach to investigate the molecular mechanisms underlying the formation of the epigenetic memory during somatic embryogenesis in Norway spruce. Nine mRNA libraries were prepared from three epitypes of the same genotype resulting from exposure to epitype-inducing temperatures of 18, 23 and 28 °C. RNA-Seq analysis revealed more than 10,000 differentially expressed genes (DEGs). The epitype-inducing conditions during SE were accompanied by marked transcriptomic changes for multiple gene models related to the epigenetic machinery. Out of 735 putative orthologs of epigenetic regulators, 329 were affected by the epitype-inducing temperatures and differentially expressed. The majority of DEGs among the epigenetic regulators was related to DNA and histone methylation, along with sRNA pathways and a range of putative thermosensing and signaling genes. These genes could be the main epigenetic regulators involved in formation of the epigenetic memory. We suggest considerable expansion of gene families of epigenetic regulators in Norway spruce compared to orthologous gene families in Populus and Arabidopsis. Obtained results provide a solid basis for further genome annotation and studies focusing on the importance of these candidate genes for the epigenetic memory formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DEG:

Differentially expressed gene

SE:

Somatic embryogenesis

References

  • Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21:798–804

    Article  CAS  PubMed  Google Scholar 

  • Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131:633–636

    CAS  PubMed  Google Scholar 

  • Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400

    Article  CAS  PubMed  Google Scholar 

  • Avramova Z (2015) Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J 83:149–159

    Article  CAS  PubMed  Google Scholar 

  • Axtell M, Westholm J, Lai E (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth TK, Imhof A (2010) Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 35:618–626

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC, Dean C (2014) Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol 6:a019471

    Article  PubMed  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Bräutigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, Fluch S, Fraga MF, Guevara MÁ, Abarca D, Johnsen Ø, Maury S, Strauss SH, Campbell MM, Rohde A, Díaz-Sala C, Cervera M-T (2013) Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 3:399–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241–246

    Article  CAS  PubMed  Google Scholar 

  • Chan SWL, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Müller F, Rieu I, Winter P (2015) Epigenetic events in plant male germ cell heat stress responses. Plant Reproduction. doi:10.1007/s00497-015-0271-5

    PubMed  Google Scholar 

  • Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271

    Article  CAS  PubMed  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    Article  CAS  PubMed  Google Scholar 

  • D’Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30:230–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson Mark A, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    Article  CAS  PubMed  Google Scholar 

  • de Vega-Bartol J, Simoes M, Lorenz W, Rodrigues A, Alba R, Dean J, Miguel C (2013) Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC Plant Biol 13:123

    Article  PubMed  PubMed Central  Google Scholar 

  • De-la-Peña C, Nic-Can GI, Galaz-Ávalos RM, Avilez-Montalvo R, Loyola-Vargas VM (2015) The role of chromatin modifications in somatic embryogenesis in plants. Front Plant Sci. doi:10.3389/fpls.2015.00635

    PubMed  PubMed Central  Google Scholar 

  • Dillon S, Zhang X, Trievel R, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Eichten SR, Schmitz RJ, Springer NM (2014) Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol 165:933–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    Article  CAS  PubMed  Google Scholar 

  • Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849:385–402

    Article  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (2000) DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev 10:217–223

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA (2010) Plant chromatin feels the heat. Cell 140:26–28

    Article  CAS  PubMed  Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PCG (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta 1819:176–185

    Article  CAS  PubMed  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JJ, Sultan SE (2011) Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Front Plant Sci 2:1–10. doi:10.3389/fpls.2011.00102

    Article  Google Scholar 

  • Iwasaki M, Paszkowski J (2014) Epigenetic memory in plants. EMBO J 33:1987–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsen Ø, Daehlen OG, Østreng G, Skrøppa T (2005a) Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytol 168:589–596

    Article  PubMed  Google Scholar 

  • Johnsen Ø, Fossdal CG, Nagy N, Molmann J, Dælen OG, Skrøppa T (2005b) Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ 28:1090–1102

    Article  CAS  Google Scholar 

  • Johnsen Ø, Kvaalen H, Yakovlev IA, Dæhlen OG, Fossdal CG, Skrøppa T (2009) An epigenetic memory from time of embryo development affects climatic adaptation in Norway spruce. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness. From the laboratory to the field, CABI, Wallingford, pp 99–107

    Chapter  Google Scholar 

  • Kamp HD, Higgins DE (2011) A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes. PLoS Pathog 7:e1002153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863

    Article  PubMed  Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727

    Article  CAS  PubMed  Google Scholar 

  • Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751

    Article  CAS  PubMed  Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 12:198–209

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147

    Article  CAS  PubMed  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20:615–626

    Article  CAS  PubMed  Google Scholar 

  • Kvaalen H, Johnsen O (2008) Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol 177:49–59

    PubMed  Google Scholar 

  • Kvaalen H, Daehlen OG, Rognstad AT, Grønstad B, Egertsdotter U (2005) Somatic embryogenesis for plant production of Abies lasiocarpa. Can J For Res 35:1053–1060

    Article  Google Scholar 

  • Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    Article  CAS  PubMed  Google Scholar 

  • Lu D (2013) Epigenetic modification enzymes: catalytic mechanisms and inhibitors. Acta Pharmaceutica Sinica B 3:141–149

    Article  Google Scholar 

  • Manning BJ, Peterson CL (2013) Releasing the brakes on a chromatin-remodeling enzyme. Nat Struct Mol Biol 20:5–7

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Kanno T, Matzke AJM (2015) RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66:243–267

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Musselman CA, Lalonde M-E, Côté J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19:1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narlikar Geeta J, Sundaramoorthy R, Owen-Hughes T (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neelakandan A, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  CAS  PubMed  Google Scholar 

  • Pérez M, Cañal M, Toorop P (2015) Expression analysis of epigenetic and abscisic acid-related genes during maturation of Quercus suber somatic embryos. Plant Cell Tiss Organ Cult 121:353–366

    Article  Google Scholar 

  • Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikaard CS, Mittelsten Scheid O (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 6:a019315

    Article  PubMed  Google Scholar 

  • Prakash S, Singh R, Lodhi N (2014) Histone demethylases and control of gene expression in plants. Cell Mol Biol (Noisy-le-Grand, France) 60: 97–105

  • Robzyk K, Recht J, Osley MA (2000) Rad6-dependent ubiquitination of histone H2B in yeast. Science 287:501–504

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Methods in molecular biology Humana Press. Totowa, NJ, pp 365–386

    Google Scholar 

  • Sahu P, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19:527–536

    Article  PubMed  Google Scholar 

  • Sengupta P, Garrity P (2013) Sensing temperature. Curr Biol 23:R304–R307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100:13225–13230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon SA, Meyers BC (2011) Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 14:148–155

    Article  CAS  PubMed  Google Scholar 

  • Skrøppa T, Kohmann K, Johnsen Ø, Steffenrem A, Edvardsen ØM (2007) Field performance and early test results of offspring from two Norway spruce seed orchards containing clones transferred to warmer climates. Can J For Res 37:515–522

    Article  Google Scholar 

  • Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601

    Article  CAS  PubMed  Google Scholar 

  • Tarakhovsky A (2010) Tools and landscapes of epigenetics. Nat Immunol 11:565–568

    Article  CAS  PubMed  Google Scholar 

  • Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Uddenberg D, Valladares S, Abrahamsson M, Sundström J, Sundås-Larsson A, von Arnold S (2011) Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234:527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Us-Camas R, Rivera-Solís G, Duarte-Aké F, De-la-Peña C (2014) In vitro culture: an epigenetic challenge for plants. Plant Cell Tiss Organ Cult 118:187–201

    Article  CAS  Google Scholar 

  • Van Oosten MJ, Bressan RA, Zhu J-K, Bohnert HJ, Chinnusamy V (2014) The role of the epigenome in gene expression control and the epimark changes in response to the environment. Crit Rev Plant Sci 33:64–87

    Article  Google Scholar 

  • Wigge PA (2013) Ambient temperature signalling in plants. Curr Opin Plant Biol 16:661–666

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Dittmer TA, Richards EJ (2008) Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. PLoS Genet 4:e1000156

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G (2013) Plant microRNAs and development. J Gen Genom 40:217–230

    Article  CAS  Google Scholar 

  • Yakovlev IA, Fossdal CG, Johnsen Ø (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187:1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev IA, Asante DKA, Fossdal CG, Junttila O, Johnsen Ø (2011) Differential gene expression related to an epigenetic memory affecting climatic adaptation in Norway spruce. Plant Sci 180:132–139

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev I, Fossdal CG, Skrøppa T, Olsen JE, Jahren AH, Johnsen Ø (2012) An adaptive epigenetic memory in conifers with important implications for seed production. Seed Sci Res 22:63–76

    Article  CAS  Google Scholar 

  • Yakovlev I, Lee Y, Rotter B, Olsen J, Skrøppa T, Johnsen Ø, Fossdal C (2014) Temperature-dependent differential transcriptomes during formation of an epigenetic memory in Norway spruce embryogenesis. Tree Genet Genom 10:355–366

    Article  Google Scholar 

  • Zhang H, He X, Zhu J-K (2013) RNA-directed DNA methylation in plants. RNA Biol 10:1593–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ksenia Zakharova (St.-Petersburg State University, Russia) for assistance during library preparation and sequencing. This work was supported by the Norwegian Research Council (FRIBIO Grant#191455/V40 and FRIMEDBIO Grant#240766/F20) and the EU FP7 project ProCoGen. Elena Carneros was supported by a grant from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism, operated by Universidad Complutense de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Yakovlev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Unique transcripts from 9 libraries sequenced using Ion Torrent PGM™ Sequencer were deposited to the SRA (Short Read Archive, NCBI) and got the following accessions: submission ID SUB916697; BioProject ID PRJNA281286 and accession IDs: SAMN03486972—SAMN03486992.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2016_2484_MOESM1_ESM.xlsx

List of candidate genes and description of primers used for qRT-PCR-analyses of transcripts in somatic embryos of Norway spruce (XLSX 3065 kb)

425_2016_2484_MOESM2_ESM.docx

Summary of RNA-Seq libraries and read mappings for Norway spruce somatic embryos of genotype B10W for three different embryogenesis stages (E1 – E2 – E3) at three epitype-inducing temperatures (18°C – 23°C – 28°C) (DOCX 23 kb)

425_2016_2484_MOESM3_ESM.docx

Characterization of epigenetic regulators in the somatic embryos of Norway spruce developing under different epitype-inducing temperatures (18, 23 and 28°C) (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, I.A., Carneros, E., Lee, Y. et al. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243, 1237–1249 (2016). https://doi.org/10.1007/s00425-016-2484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2484-8

Keywords

Navigation