Skip to main content
Log in

Xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I do not have identical structures in soybean root and root hair cell walls

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Chemical analyses and glycome profiling demonstrate differences in the structures of the xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I isolated from soybean ( Glycine max ) roots and root hair cell walls.

The root hair is a plant cell that extends only at its tip. All other root cells have the ability to grow in different directions (diffuse growth). Although both growth modes require controlled expansion of the cell wall, the types and structures of polysaccharides in the walls of diffuse and tip-growing cells from the same plant have not been determined. Soybean (Glycine max) is one of the few plants whose root hairs can be isolated in amounts sufficient for cell wall chemical characterization. Here, we describe the structural features of rhamnogalacturonan I, rhamnogalacturonan II, xyloglucan, glucomannan, and 4-O-methyl glucuronoxylan present in the cell walls of soybean root hairs and roots stripped of root hairs. Irrespective of cell type, rhamnogalacturonan II exists as a dimer that is cross-linked by a borate ester. Root hair rhamnogalacturonan I contains more neutral oligosaccharide side chains than its root counterpart. At least 90 % of the glucuronic acid is 4-O-methylated in root glucuronoxylan. Only 50 % of this glycose is 4-O-methylated in the root hair counterpart. Mono O-acetylated fucose-containing subunits account for at least 60 % of the neutral xyloglucan from root and root hair walls. By contrast, a galacturonic acid-containing xyloglucan was detected only in root hair cell walls. Soybean homologs of the Arabidopsis xyloglucan-specific galacturonosyltransferase are highly expressed only in root hairs. A mannose-rich polysaccharide was also detected only in root hair cell walls. Our data demonstrate that the walls of tip-growing root hairs cells have structural features that distinguish them from the walls of other roots cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AG:

Arabinogalactan protein

CSLD:

Cellulose synthase-like d

Dp:

Degree of polymerization

MALDI-TOF MS:

Matrix assisted laser desorption time of flight mass spectrometry

RG-I:

Rhamnogalacturonan I

RG-II:

Rhamnogalacturonan II

XEG:

Xyloglucan-specific endoglucanase

XUT:

Xyloglucan-specific galacturonosyltransferase

XXT:

Xyloglucan-specific xylosyltransferase

XyGO:

Xyloglucan oligosaccharide

References

  • Aguiar G, Batista B, Rodrigues J, Silva L, Campiglia A, Barbosa R, Barbosa F Jr (2012) Determination of trace elements in bovine semen samples by inductively coupled plasma mass spectrometry and data mining techniques for identification of bovine class. J Dairy Sci 95:7066–7073

    Article  CAS  PubMed  Google Scholar 

  • Akkerman M, Franseen-Verheijen MAW, Immerzeel P, Den Hollander L, Schel JHN, Emons AMC (2012) Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa. J Microscopy 247:60–67

    Article  CAS  Google Scholar 

  • Avci U, Pattathil S, Hahn MG (2012) Immunological approaches to plant cell wall and biomass characterization: Immunolocalization of glycan epitopes. In: Himmell ME (ed) Biomass conversion: methods and protocols. Humana Press, New York, pp 73–82

    Chapter  Google Scholar 

  • Barbosa R, Batista B, Varrique R, Coelho V, Campiglia A, Barbosa F Jr (2014) The use of advanced chemometric techniques and trace element levels for controlling the authenticity of organic coffee. Food Res Int 61:246–251

    Article  CAS  Google Scholar 

  • Basu D, Liang Y, Liu X, Himmeldirk K, Faik A, Kieliszewski M, Held M, Showalter A (2013) Functional identification of a hydroxyproline-O-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis. J Biol Chem 288:10132–10143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernal AJ, Yoo CM, Mutwil M, Jensen JK, Hou G, Blaukopf C, Sørensen I, Blancaflor EB, Scheller HV, Willats WGT (2008) Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. Plant Physiol 148:1238–1253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bibikova T, Gilroy S (2003) Root hair development. J Plant Growth Reg 21:383–415

    Article  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  CAS  PubMed  Google Scholar 

  • Bolanos L, Brewin N, Bonilla I (1996) Effects of boron on Rhizobium-legume cell-surface interactions and nodule development. Plant Physiol 110:1249–1256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brechenmacher L, Lee J, Sachdev S, Song Z, Nguyen THN, Joshi T, Oehrle N, Libault M, Mooney B, Xu D (2009) Establishment of a protein reference map for soybean root hair cells. Plant Physiol 149:670–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brewin N (2004) Plant cell wall remodelling in the rhizobium–legume symbiosis. Crit Rev Plant Sci 23:293–316

    Article  CAS  Google Scholar 

  • Broughton W, Dilworth M (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bussink H, Kester H, Visser J (1990) Molecular cloning, nucleotide sequence and expression of the gene encoding prepro-polygalacturonasell of Aspergillus niger. FEBS Lett 273:127–130

    Article  CAS  PubMed  Google Scholar 

  • Calvert H, Pence M, Pierce M, Malik N, Bauer W (1984) Anatomical analysis of the development and distribution of rhizobium infections in soybean roots. Can J Bot 62:2375–2384

    Article  Google Scholar 

  • Cassab G, Varner J (1988) Cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 39:321–353

    Article  CAS  Google Scholar 

  • Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20:1519–1537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clay R, Bergmann C, Fuller M (1997) Isolation and characterization of an endopolygalacturonase from Cochliobolus sativus and a cytological study of fungal penetration of barley. Phytopathology 87:1148–1159

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204

    Article  PubMed Central  PubMed  Google Scholar 

  • Darvill JE, McNeil M, Darvill AG, Albersheim P (1980) Structure of plant cell walls: XI. Glucuronoarabinoxylan, a second hemicellulose in the primary cell walls of suspension-cultured sycamore cells. Plant Physiol 66:1135–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeMartini J, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn M, Wyman C (2011) Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ Sci 4:4332–4339

    Article  CAS  Google Scholar 

  • Egelund J, Obel N, Ulvskov P, Geshi N, Pauly M, Bacic A, Petersen B (2007) Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue. Plant Mol Biol 64:439–451

    Article  CAS  PubMed  Google Scholar 

  • Emons A, Ketelaar T (2009) Intracellular organization: A prerequisite for root hair elongation and cell wall deposition. In: Emons AMC, Ketelaar T (eds) Plant cell monographs. Root hairs. Springer, Berlin, pp 27–44

    Google Scholar 

  • Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev 15:79–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fransen C, Haseley S, Huisman M, Schols H, Voragen A, Kamerling J, Vliegenthart J (2000) Studies on the structure of a lithium-treated soybean pectin: characteristics of the fragments and determination of the carbohydrate substituents of galacturonic acid. Carbohydr Res 328:539–547

    Article  CAS  PubMed  Google Scholar 

  • Freshour G, Clay RP, Fuller MS, Albersheim P, Darvill AG, Hahn MG (1996) Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol 110:1413–1429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gage D (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galway ME, Eng RC, Schiefelbein JW, Wasteneys GO (2011) Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth. Planta 233:985–999

    Article  CAS  PubMed  Google Scholar 

  • Geshi N, Johansen J, Dilokpimol A, Rolland A, Belcram K, Verger S, Kotake T, Tsumuraya Y, Kaneko S, Tryfona T (2013) A galactosyltransferase acting on arabinogalactan protein glycans is essential for embryo development in Arabidopsis. Plant J 76:128–137

    CAS  PubMed  Google Scholar 

  • Gille S, Hänsel U, Ziemann M, Pauly M (2009) Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases. Proc Nat Acad Sci USA 106:14699–14704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gille S, Sharma V, Baidoo E, Keasling J, Scheller H, Pauly M (2013) Arabinosylation of a Yariv-precipitable cell wall polymer impacts plant growth as exemplified by the Arabidopsis glycosyltransferase mutant ray1. Mol Plant 6:1369–1372

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Kato Y, Matsuda K (1980) Xyloglucan from suspension-cultured soybean cells. Plant Cell Physiol 21:1405–1418

    Article  CAS  PubMed  Google Scholar 

  • Haykin S (2008) Neural networks and learning machines. Prentice Hall, New Jersey

    Google Scholar 

  • Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Nat Acad Sci USA 107:15293–15298

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoffman M, Jia Z, Peña MJ, Cash M, Harper A, Blackburn AR II, Darvill A, York WS (2005) Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr Res 340:1826–1840

    Article  CAS  PubMed  Google Scholar 

  • Huisman M, Weel K, Schols H, Voragen A (2000) Xyloglucan from soybean (Glycine max) meal is composed of XXXG-type building units. Carbohydr Polym 42:185–191

    Article  CAS  Google Scholar 

  • Huisman M, Fransen C, Kamerling J, Vliegenthart J, Schols HA, Voragen A (2001) The CDTA-soluble pectic substances from soybean meal are composed of rhamnogalacturonan and xylogalacturonan but not homogalacturonan. Biopolymers 58:279–294

    Article  CAS  PubMed  Google Scholar 

  • Joshi T, Patil K, Fitzpatrick M, Franklin L, Yao Q, Cook J, Wang Z, Libault M, Brechenmacher L, Valliyodan B (2012) Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genom 13:S15

    Article  CAS  Google Scholar 

  • Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129

    Article  CAS  Google Scholar 

  • Kato Y, Matsuda K (1985) Acidic arabinoxylan as an extracellular polysaccharide of suspension-cultured soybean cells. Plant Cell Physiol 26:287–294

    CAS  Google Scholar 

  • Knoch E, Dilokpimol A, Tryfona T, Poulsen C, Xiong G, Harholt J, Petersen B, Ulvskov P, Hadi M, Kotake T (2013) A β–glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. Plant J 76:1016–1029

    Article  CAS  PubMed  Google Scholar 

  • Knoch E, Dilokpimol A, Geshi N (2014) Arabinogalactan proteins: focus on carbohydrate active enzymes. Frontiers Plant Sci 5:198

    Article  Google Scholar 

  • Libault M, Farmer A, Brechenmacher L, Drnevich J, Langley R, Bilgin D, Radwan O, Neece D, Clough S, May GD, Stacey G (2010) Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol 152:541–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, Keegstra K (2007) Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannans in plants. Plant Physiol 143:1881–1893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matoh T, Ishigaki K, Ohno K, Azuma J (1993) Isolation and characterization of a boron-polysaccharide complex from radish roots. Plant Cell Physiol 34:639–642

    CAS  Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546

    Article  CAS  PubMed  Google Scholar 

  • Mort AJ, Grover PB (1988) Characterization of root hair cell walls as potential barriers to the infection of plants by rhizobia: the carbohydrate component. Plant Physiol 86:638–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura A, Furuta H, Maeda H, Takao T, Nagamatsu Y (2002) Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan. Biosci Biotechnol Biochem 66:1301–1313

    Article  CAS  PubMed  Google Scholar 

  • Nevins D, English PD, Albersheim P (1967) The specific nature of plant cell wall polysaccharides. Plant Physiol 42:900–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguema-Ona E, Vicré-Gibouin M, Cannesan M-A, Driouich A (2013) Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci 18:440–449

    Article  CAS  PubMed  Google Scholar 

  • Nielsen E (2009) Plant cell wall biogenesis during tip growth in root hair cells. In: Emons AMC, Ketelaar T (eds) Plant cell monographs. Root hairs. Springer, Berlin, pp 85–102

    Google Scholar 

  • Ogawa-Ohnishi M, Matsushita W, Matsubayashi Y (2013) Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana. Nature Chem Biol 9:726–730

    Article  CAS  Google Scholar 

  • Oldroyd G, Downie J (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  Google Scholar 

  • Park S, Szumlanski AL, Gu F, Guo F, Nielsen E (2011) A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat Cell Biol 13:973–980

    Article  CAS  PubMed  Google Scholar 

  • Pattathil S, Avci U, Baldwin D, Swennes A, McGill J, Popper Z, Bootten T, Albert A, Davis R, Chennareddy C, Dong R, O’Shea B, Rossi R, Leoff C, Freshour G, Narra R, O’Neil M, York W, Hahn M (2010) A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 153:514–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pattathil S, Avci U, Miller J, Hahn M (2012) Immunological approaches to plant cell wall and biomass characterization: glycome profiling. In: ME H (ed) Biomass conversion: Methods and protocols. Humana Press, New York, pp 61–72

  • Pauly M, Andersen LN, Kauppinen S, Kofod LV, York WS, Albersheim P, Darvill A (1999) A xyloglucan-specific endo-β-1, 4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9:93–100

    Article  CAS  PubMed  Google Scholar 

  • Peña MJ, Kong Y, York WS, O’Neill MA (2012) A galacturonic acid–containing xyloglucan is involved in Arabidopsis root hair tip growth. Plant Cell 24:4511–4524

    Article  PubMed Central  PubMed  Google Scholar 

  • Perotto S, VandenBosch K, Butcher G, Brewin N (1991) Molecular composition and development of the plant with the peribacteroid membrane of pea root nodules. Development 112:763–773

    CAS  Google Scholar 

  • Pichon M, Journet E-P, Dedieu A, de Billy F, Truchet G, Barker D (1992) Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4:1199–1211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raven P, Evert R, Eichhorn S (2005) Biology of plants. WH Freeman, New York

    Google Scholar 

  • Reid D, Ferguson B, Gresshoff P (2011) Inoculation-and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant Microbe 24:606–618

    Article  CAS  Google Scholar 

  • Saito F, Suyama A, Oka T, Yoko-o T, Matsuoka K, Jigami Y, Shimma Y (2014) Identification of novel peptidyl serine α-galactosyltransferase gene family in plants. J Biol Chem 289:20405–20420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Schubert K (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37:539–574

    Article  CAS  Google Scholar 

  • Sherrier D, Prime T, Dupree P (1999) Glycosylphosphatidylinositol-anchored cell-surface proteins from Arabidopsis. Electrophoresis 20:2027–2035

    Article  CAS  PubMed  Google Scholar 

  • So J-S, Hodgson L, Haugland R, Leavitt M, Banfalvi Z, Nieuwkoop A, Stacey G (1987) Transposon-induced symbiotic mutants of Bradyrhizobium japonicum: isolation of two gene regions essential for nodulation. Mol Gen Genet 207:15–23

    Article  CAS  PubMed  Google Scholar 

  • Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao P, Chabaud M, Ratet P, Mysore K (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Showalter A, Egelund J, Hernandez-Sanchez A, Doblin M, Bacic A (2012) Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Frontiers Plant Sci 3:140

    Article  CAS  Google Scholar 

  • Timotiwu P, Sakurai N (2002) Identification of mono-, oligo-, and polysaccharides secreted from soybean roots. J Plant Res 115:77–85

    Article  CAS  PubMed  Google Scholar 

  • Tsyganova A, Tsyganov V, Findlay K, Borisov AY, Tikhonovich I, Brewin N (2009) Distribution of legume arabinogalactan protein-extensin (AGPE) glycoproteins in symbiotically defective pea mutants with abnormal infection threads. Cell Tissue Biol 3:93–102

    Article  Google Scholar 

  • Tuomivaara ST, Yaoi K, O’Neill MA, York WS (2014) Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydr Res 402:55–66

    Google Scholar 

  • Urbanowicz BR, Peña MJ, Ratnaparkhe S, Avci U, Backe J, Steet HF, Foston M, Li H, O’Neill MA, Ragauskas AJ, Gilbert H, York W (2012) 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Nat Acad Sci USA 109:14253–14258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urbanowicz BR, Peña MJ, Moniz HA, Moremen KW, York WS (2014) Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant J 80:197–206

    Article  CAS  PubMed  Google Scholar 

  • Van Spronsen P, Bakhuizen R, Van Brussel A, Kijne J (1994) Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process. Eur J Cell Biol 64:88–94

    PubMed  Google Scholar 

  • Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, Pol-Fachin L, Egelund J, Gille S, Harholt J, Ciancia M (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332:1401–1405

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Torres M, Ganapathy A, Thelen J, DaGue B, Mooney B, Xu D, Stacey G (2005) Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Mol Plant Microbe In 18:458–467

    Article  CAS  Google Scholar 

  • Wang C, Li S, Ng S, Zhang B, Zhou Y, Whelan J, Wu P, Shou H (2014) Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa. J Exp Bot 65:4149–4157

    Article  PubMed Central  PubMed  Google Scholar 

  • Warren M, Kester H, Benen J, Colangelo J, Visser J, Bergmann C, Orlando R (2002) Studies on the glycosylation of wild-type and mutant forms of Aspergillus niger pectin methylesterase. Carbohydr Res 337:803–812

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Wilkinson A, Krehenbrink M, Russo D, Zorreguieta A, Downie JA (2008) Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J Bacteriol 190:4706–4715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Williams M, Bernard S, Driouich A, Showalter AM, Faik A (2010) Functional identification of two nonredundant Arabidopsis α (1, 2) fucosyltransferases specific to arabinogalactan proteins. J Biol Chem 285:13638–13647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd G, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. Proc Nat Acad Sci USA 109:633–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi F, Ota Y, Hatanaka C (1996) Extraction and purification of pectic polysaccharides from soybean okara and enzymatic analysis of their structures. Carbohydr Polymers 30:265–273

    Article  CAS  Google Scholar 

  • Yin L, Verhertbruggen Y, Oikawa A, Manisseri C, Knierim B, Prak L, Jensen JK, Knox JP, Auer M, Willats WGT, Scheller H (2011) The cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development. Mol Plant 4:1024–1037

    Article  CAS  PubMed  Google Scholar 

  • York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P (1986) Isolation and characterization of plant cell walls and cell wall components. Method Enzymol 118:3–40

    Article  CAS  Google Scholar 

  • Zabotina OA (2012) Xyloglucan and its biosynthesis. Front Plant Sci 3:1–5

    Article  Google Scholar 

  • Zabotina OA, Van De Ven WTG, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn MG, Keegstra K, Raikhel NV (2008) Arabidopsis XXT5 gene encodes a putative α-1, 6-xylosyltransferase that is involved in xyloglucan biosynthesis. Plant J 56:101–115

    Article  CAS  PubMed  Google Scholar 

  • Zabotina OA, Avci U, Cavalier D, Pattathil S, Chou Y-H, Eberhard S, Danhof L, Keegstra K, Hahn MG (2012) Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis. Plant Physiol 159:1367–1384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grants DE-FG02-93ER20097 (to R.W.C.), DE-FG02-12ER16324 (to W.S.Y, M.A.O., M.J.P.), and DE-FG02-12ER16326 (to M.A.O.) for funding the structural studies of soybean root and root hair cell walls. The National Science Foundation is acknowledged through Plant Genome Grant DBI-041683 and IOB-0923992 (to M.G.H., W.S.Y., M.A.O.) for funding the development of cell wall antibodies and Plant Genome Grant DBI-0421620 (to G.S.) for funding studies of soybean functional genomics.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm A. O’Neill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muszyński, A., O’Neill, M.A., Ramasamy, E. et al. Xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I do not have identical structures in soybean root and root hair cell walls. Planta 242, 1123–1138 (2015). https://doi.org/10.1007/s00425-015-2344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2344-y

Keywords

Navigation