Skip to main content
Log in

Spatial X-ray fluorescence micro-imaging of minerals in grain tissues of wheat and related genotypes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Wheat and its related genotypes show distinct distribution patterns for mineral nutrients in maternal and filial tissues in grains. X-ray-based imaging techniques are very informative to identify genotypes with contrasting tissue-specific localization of different elements. This can help in the selection of suitable genotypes for nutritional improvement of food grain crops.

Abstract

Understanding mineral localization in cereal grains is important for their nutritional improvement. Spatial distribution of mineral nutrients (Mg, P, S, K, Ca, Fe, Zn, Mn and Cu) was investigated between and within the maternal and filial tissues in grains of two wheat cultivars (Triticum aestivum Cv. WH291 and WL711), a landrace (T. aestivum L. IITR26) and a related wild species Aegilops kotschyi, using micro-proton-induced X-ray emission (µ-PIXE) and micro-X-ray fluorescence (µ-XRF). Aleurone and scutellum were major storage tissues for macro (P, K, Ca and Mg) as well as micro (Fe, Zn, Cu and Mn) nutrients. Distinct elemental distribution patterns were observed in each of the four genotypes. A. kotschyi, the wild relative of wheat and the landrace, T. aestivum L. IITR26, accumulated more Zn and Fe in scutellum and aleurone than the cultivated wheat varieties, WH291 and WL711. The landrace IITR26, accumulated far more S in grains, Mn in scutellum, aleurone and embryo region, Ca and Cu in aleurone and scutellum, and Mg, K and P in scutellum than the other genotypes. Unlike wheat, lower Mn and higher Fe, Cu and Zn concentrations were noticed in the pigment strand of A. kotschyi. Multivariate statistical analysis, performed on mineral distribution in major grain tissues (aleurone, scutellum, endosperm and embryo region) resolved the four genotypes into distinct clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Acc:

Accession

Cm:

Centimeter

Cv:

Cultivar

G:

Gram

h:

Hour(s)

keV:

Kilo-electron volt

L:

Landrace

mA:

Milliampere

mbar:

Millibar

MeV:

Mega-electron volt

pA:

Picoampere

s:

Second

References

  • Bohn L, Josefsen L, Meyer AS, Rasmussen SK (2007) Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. J Agric Food Chem 55:7547–7552

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Neuberger T, Schwender J et al (2013) Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell 25:1625–1640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai X, Chen PD, Xu SS, Oliver RE, Chen X (2005) Utilization of alien genes to enhance Fusarium head blight resistance in wheat––a review. Euphytica 142:309–318

    Article  Google Scholar 

  • Cakmak I (2007) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y et al (2010) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    CAS  PubMed  Google Scholar 

  • Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2010) Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105:1211–1220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chhuneja P, Dhaliwal HS, Bains NS, Singh K (2006) Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breed 125:529–531

    CAS  Google Scholar 

  • Corpas FJ, Ferna A, Carreras A et al (2006) The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47:984–994

    CAS  PubMed  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    CAS  PubMed  Google Scholar 

  • Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci USA 110:8744–8749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crop Res 60:57–80

    Google Scholar 

  • Heard PJ, Feeney KA, Allen GC, Shewry PR (2002) Determination of the elemental composition of mature wheat grain using a modified secondary ion mass spectrometer (SIMS). Plant J 30:237–245

    CAS  PubMed  Google Scholar 

  • Hebbern CA, Laursen KH, Ladegaard AH et al (2009) Latent manganese deficiency increases transpiration in barley (Hordeum vulgare). Physiol Plant 135:307–316

    CAS  PubMed  Google Scholar 

  • Hemery Y, Rouau X, Lullien-Pellerin V, Barron C, Abecassis J (2007) Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci 46:327–347

    CAS  Google Scholar 

  • Hussain A, Larsson H, Kuktaite R, Johansson E (2010) Mineral composition of organically grown wheat genotypes: contribution to daily minerals intake. Int J Environ Res Public Health 7:3442–3456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwai T, Takahashi M, Oda K, Terada Y, Yoshida KT (2012) Dynamic changes in the distribution of minerals in relation to phytic-acid accumulation during rice seed development. Plant Physiol 160:2007–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jerkovic A, Kriegel AM, Bradner JR, Atwell BJ, Roberts TH, Willows RD (2010) Strategic distribution of protective proteins within bran layers of wheat protects the nutrient-rich endosperm. Plant Physiol 152:1459–1470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joyce C, Deneau A, Peterson K, Ockenden I, Raboy V, Lott JNA (2005) The concentrations and distributions of phytic acid phosphorus and other mineral nutrients in wild-type and low phytic acid Js-12-LPA wheat (Triticum aestivum) grain parts. Can J Bot 83:1599–1607

    CAS  Google Scholar 

  • Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Curr Opin Plant Biol 12:291–298

    CAS  PubMed  Google Scholar 

  • Koren Š, Arčon I, Kump P, Nečemer M, Vogel-Mikuš K (2013) Influence of CdCl2 and CdSO4 supplementation on Cd distribution and ligand environment in leaves of the Cd hyperaccumulator Noccaea (Thlaspi) praecox. Plant Soil 370:125–148

    CAS  Google Scholar 

  • Kropf U, Golob T, Nečemer M, Kump P, Korošec M, Bertoncelj J, Ogrinc N (2010) Determination of the geographical origin of Slovenian black locust, lime and chestnut honey. Food Chem 121:839–846

    CAS  Google Scholar 

  • Kwiatek M, Błaszczyk L, Wiśniewska H, Apolinarska B (2012) AegilopsSecale amphiploids: chromosome categorisation, pollen viability and identification of fungal disease resistance genes. J Appl Genet 53:37–40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lombi E, Smith E, Hansen TH et al (2011) Megapixel imaging of (micro) nutrients in mature barley grains. J Exp Bot 62:273–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyubenova L, Pongrac P, Vogel-Mikuš K (2012) Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE. Metallomics 4:333–341

    CAS  PubMed  Google Scholar 

  • Mamluk OF (1997) Wheat: prospects for global improvement. Ankara, Turkey

    Google Scholar 

  • Mazzolini AP, Pallaghy CK, Legge JF (1985) Quantitative microanalysis of Mn, Zn and other elements in mature wheat seed. New Phytol 100:483–509

    CAS  Google Scholar 

  • McNear DH Jr, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218

    CAS  PubMed  Google Scholar 

  • Millaleo Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481

    Google Scholar 

  • Mills ENC, Parker ML, Wellner N, Toole G, Feeney K, Shewry IPR (2005) Chemical imaging: the distribution of ions and molecules in developing and mature wheat grain. J Cereal Sci 41:193–201

    CAS  Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Google Scholar 

  • Moore KL, Schröder M, Lombi E, Zhao FJ, McGrath SP, Hawkesford MJ, Shewry PR, Grovenor CR (2010) NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol 185:434–445

    CAS  PubMed  Google Scholar 

  • Moore KL, Zhao F, Gritsch CS et al (2012) Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. J Cereal Sci 55:183–187

    CAS  Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    CAS  PubMed  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C et al (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152

    CAS  Google Scholar 

  • Pongrac P, Vogel-Mikuš K, Regvar M, Vavpetič P, Pelicon P, Kreft I (2011) Improved lateral discrimination in screening the elemental composition of buckwheat grain by micro-PIXE. J Agric Food Chem 59:1275–1280

    CAS  PubMed  Google Scholar 

  • Pongrac P, Kreft I, Vogel-Mikuš K et al (2013a) Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum) grain. J R Soc Interface 10:1742–5662

    Google Scholar 

  • Pongrac P, Vogel-Mikuš K, Jeromel L et al (2013b) Spatially resolved distributions of the mineral elements in the grain of tartary buckwheat (Fagopyrum tataricum). Food Res Int 54:125–131

    CAS  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296

    CAS  Google Scholar 

  • Radchuk V, Borisjuk L, Radchuk R, Steinbiss HH, Rolletschek H, Broeders S, Wobus U (2006) Jekyll encodes a novel protein involved in the sexual reproduction of barley. Plant Cell 18:1652–1666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Chhuneja P, Singh K, Dhaliwal HS (2009a) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol 56:53–64

    Google Scholar 

  • Rawat N, Tiwari VK, Neelam K, Randhawa GS, Chhuneja P, Singh K, Dhaliwal HS (2009b) Development and characterization of Triticum aestivumAegilops kotschyi amphiploids with high grain iron and zinc contents. Plant Genet Resour 7:271–280

    CAS  Google Scholar 

  • Regvar M, Eichert D, Kaulich B, Gianoncelli A, Pongrac P, Vogel-Mikuš K, Kreft I (2011) New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. J Exp Bot 62:3929–3939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35:1799–1823

    PubMed  Google Scholar 

  • Robert P, Jamme F, Barron C, Bouchet B, Saulnier L, Dumas P, Guillon F (2010) Change in wall composition of transfer and aleurone cells during wheat grain development. Planta 233:393–406

    Google Scholar 

  • Routray P, Basha O, Garg M, Singh NK, Dhaliwal HS (2007) Genetic diversity of landraces of wheat (Triticum aestivum L.) from hilly areas of Uttaranchal, India. Genet Resour Crop Evol 54:1315–1326

    Google Scholar 

  • Ryan CG (2000) Quantitative trace element imaging using PIXE and the nuclear microprobe. Int J Imaging Syst Technol 11:219–230

    Google Scholar 

  • Salunke R, Neelam K, Rawat N, Tiwari VK, Randhawa GS, Dhaliwal HS, Roy P (2011) Bioavailability of iron from wheat Aegilops derivatives selected for high grain iron and protein contents. J Agric Food Chem 59:7465–7473

    CAS  PubMed  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    CAS  PubMed  Google Scholar 

  • Shen H, Wu W, Zheng Y, Li M, Liu Q (2010) Nutrient uptake characteristics of nitrogen, phosphorus and potassium of Pinellia ternate from Sichuan during growth stage. Zhongguo Zhongyao Zazhi 35:22–26

    PubMed  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    CAS  PubMed  Google Scholar 

  • Singh SP, Vogel-Mikuš K, Arčon I, Vavpetič P, Jeromel L, Pelicon P, Kumar J, Tuli R (2013) Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron. J Exp Bot 64:3249–3260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart A, Nield H, Lott JN (1988) An investigation of the mineral content of barley grains and seedlings. Plant Physiol 86:93–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stomph TJ, Choi EY, Stangoulis JC (2011) Temporal dynamics in wheat grain zinc distribution: is sink limitation the key? Ann Bot 107:927–937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010a) Random chromosome elimination in synthetic Triticum–Aegilops amphiploids leads to development of a stable partial amphiploid with high grain micro- and macronutrient content and powdery mildew resistance. Genome 53:1053–1065

    PubMed  Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010b) Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet 121:259–269

    CAS  PubMed  Google Scholar 

  • Tiwari VK, Neelam K, Rawat N, Dahiya J, Kumar R, Bhat KV, Randhawa GS, Dhaliwal HS (2011) Characterization, evaluation and genetic diversity analysis of a set of landraces of wheat from high himalayan hills of Uttarakhand. In: Chibbar RN, Dexter J (eds) Wheat science dynamics: challenges and opportunities. AAAC International, St. Paul, pp 607–615

    Google Scholar 

  • Tolrà R, Vogel-Mikuš K, Hajiboland R et al (2011) Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J Plant Res 124:165–172

    PubMed  Google Scholar 

  • Trimarchi JR, Liu L, Smith PJ, Keefe DL (2000) Noninvasive measurement of potassium efflux as an early indicator of cell death in mouse embryos. Biol Reprod 63:851–857

    CAS  PubMed  Google Scholar 

  • Van Grieken RE, Markowicz AA (eds) (2001) Handbook of X-ray spectrometry, 2nd edn. Marcel Dekker Inc, New York

    Google Scholar 

  • Vogel-Mikuš K, Simcic J, Pelicon P et al (2008) Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496

    PubMed  Google Scholar 

  • Vogel-Mikuš K, Pelicon P, Vavpetič P, Kreft I, Regvar M (2009) Elemental analysis of edible grains by micro-PIXE: common buckwheat case study. Nucl Instrum Methods Phys Res B 267:2884–2889

    Google Scholar 

  • Vogel-Mikuš K, Arčon I, Kump P, Pelicon P, Nečemer M, Vavpetič P, Koren Š, Regvar M (2012) Analytical tools for exploring metal accumulation and tolerance in plants. In: Anjuman NA, Pereira MA, Ahmad I, Duarte AC, Umar S, Khan SA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press (Taylor & Francis), Boca Raton (FL), pp 443–496

    Google Scholar 

  • Walz C, Juenger M, Schad M, Kehr J (2002) Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J 31:189–197

    CAS  PubMed  Google Scholar 

  • Warham EJ, Mujeeb-Kazi A, Rosas V (1986) Karnal bunt (Tilletia indica) resistance screening of Aegilops species and their practical utilization for Triticum aestivum improvement. Can J Plant Pathol 8:65–70

    Google Scholar 

  • Wei L, Zhai Q (2010) The dynamics and correlation between nitrogen, phosphorus, potassium and calcium in a hazelnut fruit during its development. Front Agric China 4:352–357

    Google Scholar 

  • White P, Broadley M (2003) Calcium in plants. Ann Bot 92:487–511

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    CAS  PubMed  Google Scholar 

  • Yao YA, Wang J, Ma X, Lutts S, Sun C, Ma J, Yang Y, Achal V, Xu G (2012) Proteomic analysis of Mn-induced resistance to powdery mildew in grapevine. J Exp Bot 63:5155–5170

    CAS  PubMed  Google Scholar 

  • Young LW, Westcott ND, Attenkofer K, Reaney MJT (2006) A high-throughput determination of metal concentrations in whole intact Arabidopsis thaliana seeds using synchrotron-based X-ray fluorescence spectroscopy. J Synchrotron Radiat 13:304–313

    CAS  PubMed  Google Scholar 

  • Zee SY, O’Brien TP (1970) Studies on the ontogeny of the pigment strand in the caryopsis of wheat. Aust J Biol Sci 23:1153–1172

    Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Google Scholar 

  • Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (DBT, Government of India), and Slovenian Research Agency Research Programmes P1-0112 and P-0212. Micro-PIXE at JSI was upgraded in the project 7FP EU No. 227012 “SPIRIT”. Access to synchrotron radiation facilities of CLS (project 14-3657) and IAEA framework of coordinated research project 16796 “Applications of synchrotron radiation for environmental sciences and materials research for development of environmentally friendly resources” (CSI, KV) are acknowledged. Dr. Renfei Feng of CLS is acknowledged for expert advice on beamline operation, and Prof. Harcharan S. Dhaliwal of Eternal University for providing the grains. SPS acknowledges DBT for supporting the visit to CLS, Canada. RT thanks Department of Science and Technology, Government of India, for J. C. Bose fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudhir P. Singh or Rakesh Tuli.

Additional information

S. P. Singh and K.Vogel-Mikuš contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 909 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Vogel-Mikuš, K., Vavpetič, P. et al. Spatial X-ray fluorescence micro-imaging of minerals in grain tissues of wheat and related genotypes. Planta 240, 277–289 (2014). https://doi.org/10.1007/s00425-014-2084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2084-4

Keywords

Navigation