Skip to main content
Log in

Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves

  • Emerging Technologies
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE’s ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Audoin B, Perton M, Chigarev N, Rossignol C (2008) Diffraction of picosecond bulk longitudinal and shear waves in micron thick films; application to their nondestructive evaluation. Ultrasonics 48:574–577

    Article  PubMed  CAS  Google Scholar 

  • Audoin B, Rossignol C, Chigarev N, Ducousso M, Forget G, Guillemot F, Durrieu MC (2010) Picosecond acoustics in vegetal cells: non-invasive in vitro measurements at a sub-cell scale. Ultrasonics 50:202–207

    Article  PubMed  CAS  Google Scholar 

  • Auld BA (1990) Acoustic fields and waves in solids, vol I. Wiley, New York

    Google Scholar 

  • Bryan AK, Goranov A, Amon A, Manalis SR (2010) Measurement of mass, density, and volume during the cell cycle of yeast. Proc Natl Acad Sci 107:999–1004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Burgert I (2006) Exploring the micromechanical design of plant cell walls. Am J Bot 93:1391–1401

    Article  PubMed  Google Scholar 

  • Burgert I, Fratzl P (2007) The expanding cell. In: Verbelen J-P, Vissenberg K (eds) Plant cell monographs, vol 6. Springer, Berlin, pp 191–215

    Google Scholar 

  • Cave ID (1969) The longitudinal young’s modulus of pinus radiata. Wood Sci Technol 3:40–48

    Article  Google Scholar 

  • Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124:1–23

    Article  PubMed  CAS  Google Scholar 

  • Davies LM, Harris PJ (2003) Atomic force microscopy of microfibrils in primary cell walls. Planta 217:283–289

    PubMed  CAS  Google Scholar 

  • Dehoux T, Audoin B (2012) Non-invasive optoacoustic probing of the density and stiffness of single biological cells. J Appl Phys 112:124702

    Article  Google Scholar 

  • Dehoux T, Chigarev N, Rossignol C, Audoin B (2007) Three-dimensional elasto-optic interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics. Phys Rev B 76:024311

    Article  Google Scholar 

  • Dehoux T, Chigarev N, Rossignol C, Audoin B (2008) Effect of lateral electronic diffusion on acoustic diffraction in picosecond ultrasonics. Phys Rev B 77:214307

    Article  Google Scholar 

  • Dehoux T, Kelf TA, Tomoda M, Matsuda O, Wright OB, Ueno K, Nishijima Y, Juodkazis S, Misawa H, Tournat V, Gusev VE (2009) Vibrations of microspheres probed with ultrashort optical pulses. Opt Lett 34:3740–3742

    Article  PubMed  CAS  Google Scholar 

  • Dehoux T, Tsapis N, Audoin B (2012) Relaxation dynamics in single polymer microcapsules probed with laser-generated GHz acoustic waves. Soft Matter 8:2586–2589

    Article  CAS  Google Scholar 

  • Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759

    Article  CAS  Google Scholar 

  • Ducousso M, Dehoux T, Audoin B, Zouani O, Chollet C, Durrieu MC (2011) Picosecond ultrasonics in single cells: interface step motion for thin animal cells and brillouin scattering for thick vegetal cells. J Phys Conf Ser 269:012024

    Article  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87:148102

    Article  PubMed  CAS  Google Scholar 

  • Ferry JD (1970) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Guillet Y, Rossignol C, Audoin B, Calbris G, Ravaine S (2009) Optoacoustic response of a single submicronic gold particle revealed by the picosecond ultrasonics technique. Appl Phys Lett 95:061909

    Article  Google Scholar 

  • Ha MA, Apperly DC, Jarvis MC (1997) Molecular rigidity in dry and hydrated onion cell walls. Plant Physiol 115:593–598

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hansen SL, Ray PM, Karlsson AO, Jørgensen B, Borkhardt B, Petersen BL, Ulvskov P (2011) Mechanical properties of plant cell walls probed by relaxation spectra. Plant Physiol 155:246–258

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayot CM, Forouzesh E, Goel A, Avramova Z, Turner JA (2012) Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. J Exp Bot 63:2525–2540

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Higuet J, Valier-Brasier T, Dehoux T, Audoin B (2011) Beam distortion detection and deflectometry measurements of gigahertz surface acoustic waves. Rev Sci Instrum 82:114905

    Article  PubMed  Google Scholar 

  • Jäger A, Hofstetter K, Buksnowitz C, Gindl-Altmutter W, Konnerth J (2011) Identification of stiffness tensor components of wood cell walls by means of nanoindentation. Compos A 42:2101–2109

    Article  Google Scholar 

  • Jones L, Milne JL, Ashford D, McQueen-Mason SJ (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci 100:11783–11788

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kerstens S, Decraemer WF, Verbelen JP (2001) Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127:381–385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kittel C (1986) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  • Landau LD, Lifchitz EM (1969) Electrodynamics of continuous media. Mir, Moscow

  • Lin LS, Yuen HK, Varner JE (1991) Differential scanning calorimetry of plant cell walls. Proc Natl Acad Sci 88:2241–2243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Litovitz TA, Davis CM (1965) Physical acoustics. Academic, New York

    Google Scholar 

  • Liu D, Kuhlmey B, Smith P, Day D, Faulkner C, Overall R (2008) Reflection across plant cell boundaries in confocal laser scanning microscopy. J Microsc 231:349–357

    Article  PubMed  CAS  Google Scholar 

  • Maris HJ (1998) Picosecond ultrasonics. Sci Am 278:64–67

    Article  Google Scholar 

  • Milani P, Gholamirad M, Traas J, Arnéodo A, Boudaoud A, Argoul F, Hamant O (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in arabidopsis using atomic force microscopy. Plant J 67:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Pezeril T, Klieber C, Andrieu S, Nelson KA (2009) Optical generation of gigahertz—frequency shear acoustic waves in liquid glycerol. Phys Rev Lett 102:107402

    Article  PubMed  CAS  Google Scholar 

  • Rapusas R, Driscoll R (1995) Thermophysical properties of fresh and dried white onion slices. J Food Eng 24:149–164

    Article  Google Scholar 

  • Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A 79:2173–2184

    Article  CAS  Google Scholar 

  • Rossignol C, Chigarev N, Ducousso M, Audoin B, Forget G, Guillemot F, Durrieu MC (2008) In Vitro picosecond ultrasonics in a single cell. Appl Phys Lett 93:123901

    Article  Google Scholar 

  • Routier-Kierzkowska AL, Weber A, Kochova P, Felekis D, Nelson BJ, Kuhlemeier C, Smith RS (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scarcelli G, Yun SH (2008) Confocal brillouin microscopy for three-dimensional mechanical imaging. Nat Photon 2:39–43

    Article  CAS  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425

    Article  PubMed  Google Scholar 

  • Ségur D, Guillet Y, Audoin B (2010) Intrinsic geometric scattering probed by picosecond optoacoustics in a cylindrical cavity: application to acoustic and optical characterizations of a single micron carbon fiber. Appl Phys Lett 97:031901

    Article  Google Scholar 

  • Shelton L, Yang F, Ford W, Maris H (2005) Picosecond ultrasonic measurement of the velocity of phonons in water. Phys Status Solidi B 242:1379–1382

    Article  CAS  Google Scholar 

  • Surovtsev NV, Wiedersich JAH, Novikov VN, Rössler E, Sokolov AP (1998) Light-scattering spectra of fast relaxation in glasses. Phys Rev B 58:14888

    Article  CAS  Google Scholar 

  • Suslov D, Verbelen JP (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57:2183–2192

    Article  PubMed  CAS  Google Scholar 

  • Thompson D (2001) Extensiometric determination of the rheological properties of the epidermis of growing tomato fruit. J Exp Bot 52:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Thompson DS (2005) How do cell walls regulate plant growth? J Exp Bot 56:2275–2285

    Article  PubMed  CAS  Google Scholar 

  • Thompson DS (2008) Space and time in the plant cell wall: relationships between cell type, cell wall rheology and cell function. Ann Bot 101:203–211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thomsen C, Strait J, Vardeny Z, Maris HJ, Tauc J, Hauser JJ (1984) Coherent phonon generation and detection by picosecond light pulses. Phys Rev Lett 53:989–992

    Article  CAS  Google Scholar 

  • Thomsen C, Grahn HT, Maris HJ, Tauc J (1986) Surface generation and detection of phonons by picosecond light pulses. Phys Rev B 34:4129–4138

    Article  CAS  Google Scholar 

  • Tseng Y, Lee JSH, Kole TP, Jiang I, Wirtz D (2004) Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J Cell Sci 117:2159–2167

    Article  PubMed  CAS  Google Scholar 

  • Vanstreels E, Alamar M, Verlinden B, Enninghorst A, Loodts J, Tijskens E, Ramon H, Nicolaï B (2005) Micromechanical behaviour of onion epidermal tissue. Postharvest Biol Technol 37:163–173

    Article  Google Scholar 

  • Verdier C, Etienne J, Duperray A, Preziosi L (2009) Review: rheological properties of biological materials. CR Phys 10:790–811

    Article  CAS  Google Scholar 

  • Waterman H (1969) On the propagation of elastic waves through composite media ii. Rheol Acta 8:22–38

    Article  CAS  Google Scholar 

  • Whitney SE, Gothard MG, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121:657–664

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wilson RH, Smith AC, Kacurakova M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124:397–406

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wright OB, Perrin B, Matsuda O, Gusev VE (2008) Optical excitation and detection of picosecond acoustic pulses in liquid mercury. Phys Rev B 78:024303

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Region Aquitaine and the GIS Advanced Materials in Aquitaine (http://www.ama-materials.com/). We thank A. Boudaoud for fruitful discussions and L. Plawinski for his help in the preparation of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dehoux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GIF 165 kb)

Supplementary material 2 (GIF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadalla, A., Dehoux, T. & Audoin, B. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves. Planta 239, 1129–1137 (2014). https://doi.org/10.1007/s00425-014-2045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2045-y

Keywords

Navigation