Skip to main content
Log in

Solute accumulation differs in the vacuoles and apoplast of ripening grape berries

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phloem unloading is thought to switch from a symplastic route to an apoplastic route at the beginning of ripening in grape berries and some other fleshy fruits. However, it is unclear whether different solutes accumulate in both the mesocarp vacuoles and the apoplast. We modified a method developed for tomato fruit to extract apoplastic sap from grape berries and measured the changes in apoplastic and vacuolar pH, soluble sugars, organic acids, and potassium in ripening berries of Vitis vinifera ‘Merlot’ and V. labruscana ‘Concord’. Solute accumulation varied by genotype, compartment, and chemical species. The apoplast pH was substantially higher than the vacuolar pH, especially in Merlot (approximately two units). However, the vacuole–apoplast proton gradient declined during ripening and in Merlot, but not in Concord, collapsed entirely at maturity. Hexoses accumulated in both the vacuoles and apoplast but at different rates. Organic acids, especially malate, declined much more in the vacuoles than in the apoplast. Potassium accumulated in the vacuoles and apoplast of Merlot. In Concord, by contrast, potassium increased in the vacuoles but decreased in the apoplast. These results suggest that solutes in the fruit apoplast are tightly regulated and under developmental control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

D e :

Duration of pressurization

P g :

Applied gas pressure

fru:

Fructose

glc:

Glucose

suc:

Sucrose

s :

Mesocarp solute concentration

s a :

Apoplast solute concentration

s v :

Vacuole solute concentration

σ :

Membrane reflection coefficient

Ψleaf :

Leaf xylem water potential

V a :

Apoplast sap volume

References

  • Almeida DPF, Huber DJ (1999) Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol Plant 105:506–512

    Article  CAS  Google Scholar 

  • Bargel H, Neinhuis C (2005) Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J Exp Bot 56:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Barnavon L, Doco T, Terrier N, Ageorges A, Romieu C, Pellerin P (2000) Analysis of cell wall neutral sugar composition, β-galactosidase activity and a related cDNA clone throughout the development of Vitis vinifera grape berries. Plant Physiol Biochem 38:289–300

    Article  CAS  Google Scholar 

  • Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem 280:21437–21443

    Article  CAS  PubMed  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  CAS  PubMed  Google Scholar 

  • DeBolt S, Hardie J, Tyerman S, Ford CM (2004) Composition and synthesis of raphide crystals and druse crystals in berries of Vitis vinifera L. cv. Cabernet Sauvignon: ascorbic acid as precursor for both oxalic and tartaric acids as revealed by radiolabelling studies. Aust J Grape Wine Res 10:134–142

    Article  CAS  Google Scholar 

  • Diakou P, Carde JP (2001) In situ fixation of grape berries. Protoplasma 218:225–235

    Article  CAS  PubMed  Google Scholar 

  • Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C (2013) What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J Exp Bot 64:1451–1469

    Article  CAS  PubMed  Google Scholar 

  • Etxeberria E, González P, Tomlinson P, Pozueta-Romero J (2005) Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells. J Exp Bot 56:1905–1912

    Article  CAS  PubMed  Google Scholar 

  • Fontes N, Côrte-Real M, Gerós H (2011a) New observations on the integrity, structure, and physiology of flesh cells from fully ripened grape berry. Am J Enol Vitic 62:279–284

    Article  CAS  Google Scholar 

  • Fontes N, Gerós H, Delrot S (2011b) Grape berry vacuole: a complex and heterogeneous membrane system specialized in the accumulation of solutes. Am J Enol Vitic 62:270–278

    Article  CAS  Google Scholar 

  • Fuentes S, Sullivan W, Tilbrook J, Tyerman S (2010) A novel analysis of grapevine berry tissue demonstrates a variety-dependent correlation between tissue vitality and berry shrivel. Aust J Grape Wine Res 16:327–336

    Article  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    PubMed Central  PubMed  Google Scholar 

  • Hafke JB, van Amerongen JK, Kelling F, Furch ACU, Gaupels F, van Bel AJE (2005) Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transport phloem. Plant Physiol 138:1527–1537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanana M, Cagnac O, Yamaguchi T, Hamdi S, Ghorbel A, Blumwald E (2007) A grape berry (Vitis vinifera L.) cation/proton antiporter is associated with berry ripening. Plant Cell Physiol 48:804–811

    Article  CAS  PubMed  Google Scholar 

  • Hardie WJ, O’Brien TP, Jaudzems VG (1996) Morphology, anatomy and development of the pericarp after anthesis in grape, Vitis vinifera L. Aust J Grape Wine Res 2:97–142

    Article  Google Scholar 

  • Hawker JS, Ruffner HP, Walker RR (1976) The sucrose content of some Australian grapes. Am J Enol Vitic 27:25–129

    Google Scholar 

  • Hayes MA, Davies C, Dry IB (2007) Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. J Exp Bot 58:1985–1997

    Article  CAS  PubMed  Google Scholar 

  • Holbrook NM, Burns MJ, Field CB (1995) Negative xylem pressures in plants: a test of the balancing pressure technique. Science 270:1193–1194

    Article  CAS  Google Scholar 

  • Hu L, Sun H, Li R, Zhang L, Wang S, Sui X, Zhang Z (2011) Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage. Plant Cell Environ 34:1835–1848

    Article  CAS  PubMed  Google Scholar 

  • Jachetta JJ, Appleby AP, Boersma L (1986) Use of the pressure vessel to measure concentrations of solutes in apoplastic and membrane-filtered symplastic sap in sunflower leaves. Plant Physiol 82:995–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller M (2010) The science of grapevines—anatomy and physiology. Elsevier Academic Press, Burlington

    Google Scholar 

  • Keller M, Smith JP, Bondada BR (2006) Ripening grape berries remain hydraulically connected to the shoot. J Exp Bot 57:2577–2587

    Article  CAS  PubMed  Google Scholar 

  • Kramer EM (2006) How far can a molecule of weak acid travel in the apoplast or xylem? Plant Physiol 141:1233–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krasnow M, Matthews M, Shackel K (2008) Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. J Exp Bot 59:849–859

    Article  CAS  PubMed  Google Scholar 

  • Lalonde S, Tegeder M, Throne-Holst M, Frommer WB, Patrick JW (2003) Phloem loading and unloading of sugars and amino acids. Plant Cell Environ 26:37–56

    Article  CAS  Google Scholar 

  • Lund ST, Peng FY, Nayar T, Reid KE, Schlosser J (2008) Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Plant Mol Biol 68:301–315

    Article  CAS  PubMed  Google Scholar 

  • Lüttge U, Smith JAC (1984) Mechanism of passive malic-acid efflux from vacuoles of the CAM plant Kalanchoë daigremontiana. J Membr Biol 81:149–158

    Article  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Meyer S, De Angeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–213

    Article  CAS  PubMed  Google Scholar 

  • Milner ID, Ho LC, Hall JL (1995) Properties of proton and sugar transport at the tonoplast of tomato (Lycopersicon esculentum) fruit. Physiol Plant 94:399–410

    Article  CAS  Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol 48:191–222

    Article  CAS  PubMed  Google Scholar 

  • Patrick JW, Zhang W, Tyerman SD, Offler CE, Walker NA (2001) Role of membrane transport in phloem translocation of assimilates and water. Aust J Plant Physiol 28:695–707

    CAS  Google Scholar 

  • Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC Genomics 8:428. doi:10.1186/1471-2164-8-428

    Article  PubMed Central  PubMed  Google Scholar 

  • Pomper KW, Breen PJ (1995) Levels of apoplastic solutes in developing strawberry fruit. J Exp Bot 46:743–752

    Article  CAS  Google Scholar 

  • Popp M, Lied W, Meyer AJ, Richter A, Schiller P, Schwitte H (1996) Sample preservation for determination of organic compounds: microwave versus freeze-drying. J Exp Bot 47:1469–1473

    Article  CAS  Google Scholar 

  • Roitsch T, González MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Patrick JW (1995) The cellular pathway of postphloem sugar transport in developing tomato fruit. Planta 196:434–444

    Article  CAS  Google Scholar 

  • Ruan YL, Mate C, Patrick JW, Brady CJ (1995) Non-destructive collection of apoplastic fluid from developing tomato fruit using a pressure dehydration procedure. Aust J Plant Physiol 22:761–769

    Article  Google Scholar 

  • Ruan YL, Patrick JW, Brady CJ (1996) The composition of apoplast fluid recovered from intact developing tomato fruit. Aust J Plant Physiol 23:9–13

    Article  CAS  Google Scholar 

  • Sarry JE, Sommerer N, Sauvage FX, Bergoin A, Rossignol M, Albagnac G, Romieu C (2004) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics 4:201–215

    Article  CAS  PubMed  Google Scholar 

  • Storey R (1987) Potassium localization in the grape berry pericarp by energy-dispersive X-ray microanalysis. Am J Enol Vitic 38:301–309

    CAS  Google Scholar 

  • Terrier N, Sauvage FX, Ageorges A, Romieu C (2001) Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213:20–28

    Article  CAS  PubMed  Google Scholar 

  • Thompson MV, Holbrook NM (2004) Scaling phloem transport: information transmission. Plant Cell Environ 27:509–519

    Article  Google Scholar 

  • Tilbrook J, Tyerman SD (2008) Cell death in grape berries: varietal differences linked to xylem pressure and berry weight loss. Funct Plant Biol 35:173–184

    Article  Google Scholar 

  • Turner NC (1988) Measurement of plant water status by the pressure chamber technique. Irrig Sci 9:289–308

    Article  Google Scholar 

  • Turner NC, Long MJ (1980) Errors arising from rapid water loss in the measurement of leaf water potential by the pressure chamber technique. Aust J Plant Physiol 7:427–537

    Article  Google Scholar 

  • Tyree MT, Hammel HT (1972) The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J Exp Bot 23:267–282

    Article  Google Scholar 

  • Wada H, Shackel KA, Matthews MA (2008) Fruit ripening in Vitis vinifera: apoplastic solute accumulation accounts for pre-veraison turgor loss in berries. Planta 227:1351–1361

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Tyree MT, Bennink JP (2000) The transmission of gas pressure to xylem fluid pressure when plants are inside a pressure bomb. J Exp Bot 51:309–316

    Article  CAS  PubMed  Google Scholar 

  • Wiedemann P, Neinhuis C (1998) Biomechanics of isolated plant cuticles. Bot Acta 111:28–34

    Google Scholar 

  • Wu GL, Zhang XY, Zhang LY, Pan QH, Shen YY, Zhang DP (2004) Phloem unloading in developing walnut fruit is symplasmic in the seed pericarp and apoplasmic in the fleshy pericarp. Plant Cell Physiol 45:1461–1470

    Article  CAS  PubMed  Google Scholar 

  • Zhang LY, Peng YB, Pelleschi-Travier S, Fan Y, Lu YF, Lu YM, Gao XP, Shen YY, Delrot S, Zhang DP (2004) Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol 135:574–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC, Wu FQ, Yu XC, Zhang DP (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142:220–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Qu H, Dibley KE, Offler CE, Patrick JW (2007) A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. Plant J 49:750–764

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Chateau Ste. Michelle Distinguished Professorship. We thank Dr. John K. Fellman for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Keller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2013_2004_MOESM1_ESM.tif

Fig. S1 Progression of fruit ripening in Merlot and Concord grapes. Total juice solute concentration (a), pH (b), and total organic acids as the sum of all organic acids determined by HPLC (c). Samples were grouped based on visual appearance of the berry skin (1 = green; 2 = blush/pink; 3 = red/purple; 4 = blue) or juice solute concentration (5 = ripe: 20-24 ºBrix; 6 = overripe: > 24 ºBrix). Data are mean ± se where se > symbol size (n = 3-18 samples of 8-12 berries) (TIFF 61691 kb)

425_2013_2004_MOESM2_ESM.tif

Fig. S2 Changes in the proton concentration in mesocarp vacuoles and apoplast of ripening Merlot and Concord grape berries. Samples were grouped based on visual appearance of the berry skin (1 = green; 2 = blush/pink; 3 = red/purple; 4 = blue) or juice solute concentration (5 = ripe: 20-24 ºBrix; 6 = overripe: > 24 ºBrix). Data are mean ± se where se > symbol size (n = 3-18 samples of 8-12 berries) (TIFF 19305 kb)

425_2013_2004_MOESM3_ESM.tif

Fig. S3 Relationship between total vacuolar solutes and vacuolar and apoplastic hexoses (a), malate (b), and K+ (c) in ripening Merlot and Concord grape berries. Correlation coefficients are as follows: Concord apoplast, r = 0.97, vacuole, r > 0.99; Merlot apoplast, r = 0.93, vacuole, r > 0.99 (a); Concord apoplast, r = -0.67, vacuole, r = -0.73; Merlot apoplast, r = 0.35, vacuole, r = -0.79 (b); Concord apoplast, r = -0.75, vacuole, r = 0.75; Merlot apoplast, r = 0.74, vacuole, r = 0.87 (c); all P < 0.001, n ≥ 60; curves were fitted using the distance-weighted least squares method (TIFF 50133 kb)

425_2013_2004_MOESM4_ESM.tif

Fig. S4 Changes in the concentrations of oxalate (a), succinate (b), and citrate (c) in mesocarp vacuoles and apoplast of ripening Merlot and Concord grape berries. Samples were grouped based on visual appearance of the berry skin (1 = green; 2 = blush/pink; 3 = red/purple; 4 = blue) or juice solute concentration (5 = ripe: 20-24 ºBrix; 6 = overripe: > 24 ºBrix). Data are mean ± se where se > symbol size (n = 3-18 samples of 8-12 berries) (TIFF 50151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, M., Shrestha, P.M. Solute accumulation differs in the vacuoles and apoplast of ripening grape berries. Planta 239, 633–642 (2014). https://doi.org/10.1007/s00425-013-2004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-2004-z

Keywords

Navigation