Skip to main content
Log in

Systemic regulation of sulfur homeostasis in Medicago truncatula

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Sulfur (S) is an essential macronutrient for plants, and deficiency in soil S availability limits plant growth. Adaptive strategies have been evolved by plants to respond to S deficiency by coordinating systemic regulatory mechanism. A split-root experiment using legume model plant Medicago truncatula Gaertn. was conducted to investigate the systemic response to S deficiency. Plant growth, root morphology and S contents under varying conditions of S supply were determined, and the expression of genes encoding sulfate transporter (MtSULTRs) and MtAPR1 encoding an enzyme involved in S assimilation was monitored. Our results demonstrated that there was an apparent systemic response of M. truncatula to heterogeneous S supply in terms of root length, S contents, and S uptake and assimilation at the transcriptional level. When exposed to heterogeneous S supply, M. truncatula plants showed proliferation of lateral roots in S-rich medium and reduction in investment to S-depleted roots. Growth was stimulated with half-part of roots exposed to S-deficient medium. There were different expression patterns of MtSULTRs and MtAPR1 in response to heterogeneous S supply both in roots and shoots of M. truncatula. Expression of MtSULTR1.1 and MtSULTR1.3 was systemically responsive to S deficiency, leading to an enhancement of S uptake in roots exposed to S-sufficient medium. In addition, the response of S-deprived seedlings to re-supply of sulfate and Cys was also analyzed. It was shown that sulfate, but not Cys, may serve as a systemic signal to regulate the expression of genes associated with S absorption and assimilation in M. truncatula. These findings provide a comprehensive picture of systemic responses to S deficiency in leguminous species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APR:

Adenosine 5′-phosphosulfate reductase

Cys:

Cysteine

GSH:

Glutathione

qRT-PCR:

Quantitative real-time PCR

S:

Sulfur

SULTR:

Sulfate transporter

References

  • Banasiak J, Biała W, Staszków A, Swarcewicz B, Kępczyńska E, Figlerowicz M, Jasiński M (2013) A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J Exp Bot 64:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Buchner P, Stuiver CEE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, De Kok LJ (2004a) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136:3396–3408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchner P, Takahashi H, Hawkesford MJ (2004b) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773

    Article  CAS  PubMed  Google Scholar 

  • Burleigh SH, Harrison MJ (1999) The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol 119:241–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447

    Article  CAS  PubMed  Google Scholar 

  • Cook DR (1999) Medicago truncatula: a model in the making! Commentary. Curr Opin Plant Biol 2:301–304

    Article  CAS  PubMed  Google Scholar 

  • Dan H, Yang G, Zheng Z-L (2007) A negative regulatory role for auxin in sulphate deficiency response in Arabidopsis thaliana. Plant Mol Biol 63:221–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davidian J-C, Kopriva S (2010) Regulation of sulfate uptake and assimilation-the same or not the same? Mol Plant 3:314–325

    Article  CAS  PubMed  Google Scholar 

  • Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87

    Article  CAS  PubMed  Google Scholar 

  • Forde B (2002) The role of long-distance signalling in plant responses to nitrate and other nutrients. J Exp Bot 53:39–43

    Article  CAS  PubMed  Google Scholar 

  • Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68

    Article  CAS  Google Scholar 

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    Article  CAS  PubMed  Google Scholar 

  • Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulfate and sulfate transport in tobacco plants. J Exp Bot 45:1069–1076

    Article  CAS  Google Scholar 

  • Honsel A, Kojima M, Haas R, Frank W, Sakakibara H, Herschbach C, Rennenberg H (2012) Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones. J Exp Bot 63:1873–1893

    Article  CAS  PubMed  Google Scholar 

  • Howarth J, Fourcroy P, Davidian J-C, Smith FW, Hawkesford MJ (2003) Cloning of two contrasting high-affinity sulphate transporters from tomato induced by low sulphate and infection by the vascular pathogen Verticillium dahliae. Planta 218:58–64

    Article  CAS  PubMed  Google Scholar 

  • Hubberten HM, Klie S, Caldana C, Degenkolbe T, Willmitzer L, Hoefgen R (2012a) Additional role of O-acetylserine as a sulfur status-independent regulator during plant growth. Plant J 70:666–677

    Article  CAS  PubMed  Google Scholar 

  • Hubberten HM, Drozd A, Tran BV, Hesse H, Hoefgen R (2012b) Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana. Plant J 72:625–635

    Article  CAS  PubMed  Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kataoka T, Watanabe–Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004b) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim H, Hirai MY, Hayashi H, Chino M, Naito S, Fujiwara T (1999) Role of O-acetyl-l-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Planta 209:282–289

    Article  CAS  PubMed  Google Scholar 

  • Kutz A, Muller A, Hennig P, Kaiser WM, Piotrowski M, Weiler EW (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30:95–106

    Article  CAS  PubMed  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO4 2− uptake in intact canola—The role of phloem-translocated glutathione. Plant Physiol 111:147–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lappartient AG, Uidmar JJ, Leustek T, Glass ADM, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    Article  CAS  PubMed  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  PubMed  Google Scholar 

  • Lin S-I, Chiang S-F, Lin W-Y, Chen J-W, Tseng C-Y, Wu P-C, Chiou T-J (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu T-Y, Chang C-Y, Chiou T-J (2009) The long-distance signaling of mineral macronutrients. Curr Opin Plant Biol 12:312–319

    Article  CAS  PubMed  Google Scholar 

  • Lopez–Bucio J, Cruz–Ramirez A, Herrera–Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin MN, Tarczynski MC, Shen B, Leustek T (2005) The role of 5’-adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth Res 86:309–323

    Article  CAS  PubMed  Google Scholar 

  • Maruyama–Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation. J Exp Bot 55:1843–1849

    Article  PubMed  Google Scholar 

  • Miao Z, Li D, Zhang Z, Dong J, Su Z, Wang T (2012) Medicago truncatula transporter database: a comprehensive database resource for M. truncatula transporters. BMC Genomics 13:60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Daub CO, Hesse H, Willmitzer L, Hoefgen R (2005) Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. J Exp Bot 56:1887–1896

    Article  CAS  PubMed  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible W-R (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    Article  CAS  PubMed  Google Scholar 

  • Rotte C, Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5’-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124:715–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian J-C, Fourcroy P, Berthomieu P (2008) Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol 147:897–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruffel S, Freixes S, Balzergue S, Tillard P, Jeudy C, Martin–Magniette ML, van der Merwe MJ, Kakar K, Gouzy J, Fernie AR, Udvardi M, Salon C, Gojon A, Lepetit M (2008) Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiol 146:2020–2035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA 108:18524–18529

    Article  CAS  PubMed  Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136:2443–2450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scherer HW (2001) Sulphur in crop production–invited paper. Eur J Agron 14:81–111

    Article  CAS  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92:9373–9377

    Article  CAS  PubMed  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, VandenBerg PJ, Belcher AR, Warrilow GS (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12:875–884

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H (2010) Regulation of sulfate transport and assimilation in plants. Int Rev Cell Mol Biol 281:129–159

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JD, Engler G, VanMontagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:11102–11107

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Watanabe–Takahashi A, Smith FW, Blake–Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Thibaud MC, Arrighi JF, Bayle V, Chiarenza S, Creff A, Bustos R, Paz–Ares J, Poirier Y, Nussaume L (2010) Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J 64:775–789

    Article  CAS  PubMed  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krahenbuhl U, den Camp RO, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5’-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31:729–740

    Article  CAS  PubMed  Google Scholar 

  • Vidmar JJ, Schjoerring JK, Touraine B, Glass ADM (1999) Regulation of the hvst1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare. Plant Mol Biol 40:883–892

    Article  CAS  PubMed  Google Scholar 

  • Walch–Liu P, Ivanov II, Filleur S, Gan YB, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881

    Article  PubMed  Google Scholar 

  • Wang TZ, Chen L, Zhao MG, Tian QY, Zhang WH (2011) Identification of drought-responsive microRNAs and their targets in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 12:367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, SULTR1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Rong H, Pilbeam D (2007) Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (31272234) and State Key Laboratory of Vegetation and Environmental Change. We thank the anonymous reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuying Tian or Wen-Hao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Tian, Q. & Zhang, WH. Systemic regulation of sulfur homeostasis in Medicago truncatula . Planta 239, 79–96 (2014). https://doi.org/10.1007/s00425-013-1958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1958-1

Keywords

Navigation