Skip to main content
Log in

Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Trans-zeatin is a kind of cytokinins that plays a crucial role in plant growth and development. The master trans-zeatin O-glucosyltransferase of Arabidopsis thaliana, UGT85A1, has been previously identified through biochemical approach. To determine the in planta role of UGT85A1 gene, the characterization of transgenic Arabidopsis plants overexpressing UGT85A1 was carried out. Under normal conditions, transgenic Arabidopsis did not display clearly altered phenotypes. A remarkable alteration is that the accumulation level of the trans-zeatin O-glucosides was significantly increased in UGT85A1 overexpressing transgenic Arabidopsis, while other forms of cytokinins kept the similar concentrations compared to the wild type. When treated with exogenously applied trans-zeatin, UGT85A1 overexpressing Arabidopsis showed much less sensitivity to trans-zeatin in primary root elongation and lateral root formation. Meanwhile, the chlorophyll content of detached leaves of transgenic Arabidopsis was much lower than wild type. Studies of spatial–temporal expression patterns showed that UGT85A1 was mainly expressed in the early seedlings and developing seeds. Analysis of subcellular localization suggested that UGT85A1 was localized to cytoplasm and nucleus. Taken together, our data suggest that overexpression of Arabidopsis glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

tZ:

Trans-zeatin

tZR:

tZ riboside

tZRPs:

tZR phosphates

cZ:

cis-zeatin

cZR:

cZ riboside

cZRPs:

cZR phosphates

iP:

N 6-(Δ2-isopentenyl) adenine

iPR:

iP riboside

iPRPs:

iPR phosphates

tZOG:

tZ-O-glucoside

tZROG:

tZR-O-glucoside

cZROG:

cZR-O-glucoside

tZRPsOG:

tZRPs-O-glucoside

tZ7G:

tZ-7-N-glucoside

tZ9G:

tZ-9-N-glucoside

iP7G:

iP-7-N-glucoside

iP9G:

iP-9-N–glucoside

UGT:

Uridine diphosphate glycosyltransferase

References

  • Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32:1147–1160

    Article  PubMed  CAS  Google Scholar 

  • Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969

    Article  PubMed  CAS  Google Scholar 

  • Beemster GTS, Baskin TI (2000) STUNTED PLANT 1 mediates effects of cytokinin, but not of auxin, on cell division and expansion in the root of Arabidopsis. Plant Physiol 124:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Bishopp A, Help H, Helariutta Y (2009) Cytokinin signaling during root development. Int Rev Cell Mol Biol 276:1–48

    Article  PubMed  Google Scholar 

  • Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palmet K (1993) Release of active cytokinin by a β-glucosidase localized to the maize root meristem. Science 262:1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Cary AJ, Liu W, Howell SH (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyls elongation in Arabidopsis thaliana seedlings. Plant Physiol 107:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3:445–459

    PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83

    Article  PubMed  CAS  Google Scholar 

  • Hou B, Lim EK, Higgins G, Bowles DJ (2004) N-Glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832

    Article  PubMed  CAS  Google Scholar 

  • Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins GS, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij FE, Bowles D, Poppenberger B (2011) Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol 11:51

    Article  PubMed  CAS  Google Scholar 

  • Ioio RD, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682

    Article  Google Scholar 

  • Jameson PE (1994) Cytokinin metabolism and compartmentation. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, pp 113–128

    Google Scholar 

  • Kiran NS, Eva Benková, Reková A, Dubová J, Malbeck J, Palme K, Brzobohaty B (2012) Retargeting a maize β-glucosidase to the vacuole—evidence from intact plants that zeatin-O-glucoside is stored in the vacuole. Phytochemistry 79:67–77

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly-sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214

    Article  PubMed  CAS  Google Scholar 

  • Kristoffersen P, Brzobohaty B, Hohfeld I, Bako L, Melkonian M, Palme K (2000) Developmental regulation of the maize Zm-p60.1 gene encoding a β-glucosidase located to plastids. Planta 210:407–415

    Article  PubMed  CAS  Google Scholar 

  • Kudo T, Makita N, Kojima M, Tokunaga H, Sakakibara H (2012) Cytokinin activity of cis-zeatin and phenotypic alterations induced by over-expression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiol 160:319–331

    Article  PubMed  CAS  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  PubMed  CAS  Google Scholar 

  • Letham DS, Palni LMS, Tao GQ, Gollnow BI, Bates CM (1983) Regulators of cell division in plant tissues XXIX. The activities of cytokinin glucosides and alanine conjugates in cytokinin bioassays. J Plant Growth Regul 2:103–115

    Article  CAS  Google Scholar 

  • Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123

    Article  PubMed  CAS  Google Scholar 

  • Martin RC, Mok MC, Mok DWS (1999) Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc Natl Acad Sci USA 96:284–289

    Article  PubMed  CAS  Google Scholar 

  • Martin RC, Mok MC, Habben JE, Mok DWS (2001) A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci USA 98:5922–5926

    Article  PubMed  CAS  Google Scholar 

  • Meek L, Martin RC, Shan X, Karplus PA, Mok DWS, Mok MC (2008) Isolation of legume glycosyltransferases and active site mapping of the Phaseolus lunatus zeatin O-glucosyltransferase ZOG1. J Plant Growth Regul 27:192–201

    Article  CAS  Google Scholar 

  • Mok DWS, Mok MC (1994) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton

    Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ (1978) Differential cytokinin structure–activity relationships in Phaseolus. Plant Physiol 61:72–75

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles DJ (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA 102:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125:650–651

    Article  CAS  Google Scholar 

  • Rodo AP, Brugiere N, Vankova R, Malbeck J, Olson JM, Haines SC, Martin RC, Habben JE, Mok DWS, Mok MC (2008) Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. J Exp Bot 59:2673–2686

    Article  CAS  Google Scholar 

  • Romanov GA, Lomin SN, Schmülling T (2006) Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J Exp Bot 57:4051–4058

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Li Y, Lim E, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2(3004):1–6

    Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  PubMed  CAS  Google Scholar 

  • Smehilova M, Galuszka P, Bilyeu KD, Jaworek P, Kowalska M, Sebela M, Sedlarova M, English JT, Frebort I (2009) Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. J Exp Bot 60:2701–2712

    Article  PubMed  CAS  Google Scholar 

  • Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305

    Article  PubMed  Google Scholar 

  • Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmülling T (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67:157–168

    Article  PubMed  CAS  Google Scholar 

  • Veach YK, Martin RC, Mok DWS, Malbeck J, Vankova R, Mok MC (2003) O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131:1374–1380

    Article  PubMed  CAS  Google Scholar 

  • von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221:35–43

    Article  Google Scholar 

  • Wang B, Jin SH, Hu HQ, Sun YG, Wang YW, Han P, Hou BK (2012) UGT87A2, an Arabidopsis glycosyltransferase, regulates flowering time via FLOWERING LOCUS C. New Phytol 194:666–675

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 30770214 and No. 90917006) to B.K.H.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Kai Hou.

Additional information

S.-H. Jin and X.-M. Ma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, SH., Ma, XM., Kojima, M. et al. Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta 237, 991–999 (2013). https://doi.org/10.1007/s00425-012-1818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1818-4

Keywords

Navigation