Skip to main content
Log in

Isolation and functional characterisation of banana phytoene synthase genes as potential cisgenes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Carotenoids occur in all photosynthetic organisms where they protect photosystems from auto-oxidation, participate in photosynthetic energy transfer and are secondary metabolites. Of the more than 600 known plant carotenoids, few can be converted into vitamin A by humans and so these pro-vitamin A carotenoids (pVAC) are important in human nutrition. Phytoene synthase (PSY) is a key enzyme in the biosynthetic pathway of pVACs and plays a central role in regulating pVAC accumulation in the edible portion of crop plants. Banana is a major commercial crop and serves as a staple crop for more than 30 million people. There is natural variation in fruit pVAC content across different banana cultivars, but this is not well understood. Therefore, we isolated PSY genes from banana cultivars with relatively high (cv. Asupina) and low (cv. Cavendish) pVAC content. We provide evidence that PSY in banana is encoded by two paralogs (PSY1 and PSY2), each with a similar gene structure to homologous genes in other monocots. Further, we demonstrate that PSY2 is more highly expressed in fruit pulp compared to leaf. Functional analysis of PSY1 and PSY2 in rice callus and E. coli demonstrates that both genes encode functional enzymes, and that Asupina PSYs have approximately twice the enzymatic activity of the corresponding Cavendish PSYs. These results suggest that differences in PSY enzyme activity contribute significantly to the differences in Asupina and Cavendish fruit pVAC content. Importantly, Asupina PSY genes could potentially be used to generate new cisgenic or intragenic banana cultivars with enhanced pVAC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PSY:

Phytoene synthase

pVAC:

Pro-vitamin A carotenoid

VAD:

Vitamin A deficiency

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Asif MH, Dhawan P, Nath P (2000) A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol Biol Rep 18:109–115

    Article  CAS  Google Scholar 

  • Baranska M, Baranski R, Schulz H, Nothnagel T (2006) Tissue-specific accumulation of carotenoids in carrot roots. Planta 224:1028–1037

    Article  PubMed  CAS  Google Scholar 

  • Bartley GE, Scolnik PA (1993) cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J Biol Chem 268:25718–25721

    PubMed  CAS  Google Scholar 

  • Belostotsky DA, Sieburth LE (2009) Kill the messenger: mRNA decay and plant development. Curr Opin Plant Biol 12:96–102

    Article  PubMed  CAS  Google Scholar 

  • Bender DA (2003) Nutritional biochemistry of the vitamins, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Busch M, Seuter A, Hain R (2002) Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol 128:439–453

    Article  PubMed  CAS  Google Scholar 

  • Cavatorta J, Perez KW, Gray SM, Van Eck J, Yeam I, Jahn M (2011) Engineering virus resistance using a modified potato gene. Plant Biotechnol J 9:1014–1021

    Article  PubMed  CAS  Google Scholar 

  • Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38:833–847

    Article  CAS  Google Scholar 

  • Chander S, Guo YQ, Yang XH, Zhang J, Lu XQ, Yan JB, Song TM, Rocheford TR, Li JS (2008) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet 116:223–233

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Chu CC, Wang CS, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sinica 18:659–668

    Google Scholar 

  • Clotault J, Peltier D, Berruyer R, Thomas M, Briard M, Geoffriau E (2008) Expression of carotenoid biosynthesis genes during carrot root development. J Exp Bot 59:3563–3573

    Article  PubMed  CAS  Google Scholar 

  • Daniells J, Jenny C, Karamura D, Tomekpe K (2001) Diversity in the genus Musa. Musalogue: a catalogue of Musa germplasm. International Network for the Improvement of Banana and Plantain, Montpellier

  • Demmig-Adams B, Adams WW 3rd (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  PubMed  CAS  Google Scholar 

  • Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM (1982) Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet 1:561–573

    PubMed  CAS  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  PubMed  CAS  Google Scholar 

  • Englberger L, Schierle J, Marks GC, Fitzgerald MH (2003) Micronesian banana, taro, and other foods: newly recognized sources of provitamin A and other carotenoids. J Food Compos Anal 16:3–19

    Article  CAS  Google Scholar 

  • Englberger L, Wills RB, Blades B, Dufficy L, Daniells JW, Coyne T (2006) Carotenoid content and flesh color of selected banana cultivars growing in Australia. Food Nutr Bull 27:281–291

    PubMed  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701

    Article  CAS  Google Scholar 

  • Gady A, Vriezen W, Van de Wal M, Huang P, Bovy A, Visser R, Bachem C (2012) Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening. Mol Breed 29:801–812

    Article  PubMed  CAS  Google Scholar 

  • Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135:1776–1783

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Altieri MA (2005) Transgenic crops: implications for biodiversity and sustainable agriculture. Bull Sci Technol Soc 25:335–353

    Article  Google Scholar 

  • Giorio G, Stigliani AL, D’Ambrosio C (2008) Phytoene synthase genes in tomato (Solanum lycopersicum L.)—new data on the structures, the deduced amino acid sequences and the expression patterns. FEBS J 275:527–535

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Howitt CA, Cavanagh CR, Bowerman AF, Cazzonelli C, Rampling L, Mimica JL, Pogson BJ (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9:363–376

    Article  PubMed  CAS  Google Scholar 

  • Hribova E, Cizkova J, Christelova P, Taudien S, de Langhe E, Dolezel J (2011) The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS One 6:e17863

    Article  PubMed  CAS  Google Scholar 

  • IITA (2009) Banana and plantain systems. http://www.iita.org/c/document_library/get_file?p_l_id=25410&folderId=27021&name=DLFE-172.pdf

  • Khanna H, Becker D, Kleidon J, Dale JL (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed 14:239–252

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23:2947–2948

  • Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  PubMed  CAS  Google Scholar 

  • Li F, Vallabhaneni R, Wurtzel ET (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345

    Article  PubMed  CAS  Google Scholar 

  • Maass D, Arango J, Wüst F, Beyer P, Welsch R (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4:e6373

    Article  PubMed  Google Scholar 

  • Malik KA (1992) Some universal media for the isolation, growth and purity checking of a broad-spectrum of microorganisms. World J Microb Biot 8:453–456

    Article  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  PubMed  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  PubMed  CAS  Google Scholar 

  • Molesini B, Pii Y, Pandolfini T (2012) Fruit improvement using intragenesis and artificial microRNA. Trends Biotechnol 30:80–88

    Article  PubMed  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  PubMed  CAS  Google Scholar 

  • Perez-Jones A, Mallory-Smith CA, Hansen JL, Zemetra RS (2006) Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host). Theor Appl Genet 114:177–186

    Article  PubMed  CAS  Google Scholar 

  • Pillay M, Tenkouano A, Ude G, Ortiz R (2004) Molecular characterization of genomes in Musa and its applications. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations, Chapter 23. Science Publishers, Enfield, NH, USA

  • Rodriguez-Suarez C, Atienza SG, Piston F (2011) Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult. PLoS One 6:e19885

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM (2010) Barriers and paths to market for genetically engineered crops. Plant Biotechnol J 8:101–111

    Article  PubMed  Google Scholar 

  • Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403

    Article  PubMed  CAS  Google Scholar 

  • Schledz M, Al Babili S, Von Lintig J, Haubruck H, Rabbani S, Kleinig H, Beyer P (1996) Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering. Plant J 10:781–792

    Article  PubMed  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    Article  PubMed  CAS  Google Scholar 

  • Scolnik PA, Bartley GE (1994) Nucleotide sequence of an Arabidopsis cDNA for phytoene synthase. Plant Physiol 104:1471–1472

    Article  PubMed  CAS  Google Scholar 

  • Sharrock S, Frison E (1998) Musa production around the world—trends, varieties and regional importance. Netw Banana Plantain Ann Rep 1998:41–46

    Google Scholar 

  • Singh A, Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118:1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–750

    PubMed  CAS  Google Scholar 

  • Taylor M, Ramsay G (2005) Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiol Plant 124:143–151

    Article  CAS  Google Scholar 

  • Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154:304–311

    Article  PubMed  CAS  Google Scholar 

  • Welsch R, Beyer P, Hugueney P, Kleinig H, von Lintig J (2000) Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 211:846–854

    Article  PubMed  CAS  Google Scholar 

  • Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    Article  PubMed  CAS  Google Scholar 

  • West CE (2000) Meeting requirements for vitamin A. Nutr Rev 58:341–345

    Article  PubMed  CAS  Google Scholar 

  • West KP Jr (2002) Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr 132:2857S–2866S

    PubMed  CAS  Google Scholar 

  • Wheelan SJ, Church DM, Ostell JM (2001) Spidey: a tool for mRNA-to-genomic alignments. Genome Res 11:1952–1957

    PubMed  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to: Doug Becker at QUT for coordinating the supply of plant material from Queensland Department of Employment, Economic Development and Innovation (DEEDI); Jeff Daniells at DEEDI (South Johnstone) for supplying Asupina green fruit tissue; Jennifer Kleidon at QUT for supplying Cavendish and Ladyfinger leaf tissue, maintenance of Asupina, Lakatan and Wain banana plants at QUT, and for training in rice tissue culture and transformation techniques; Sharon Hamill at DEEDI (Nambour) for supplying Asupina, Lakatan and Wain banana plants; Russell Reinke (Yanco Agricultural Institute) for supplying Nipponbare rice seeds; Queensland University of Technology International Doctorate Scholarship program for postgraduate scholarship support and funding. The research was funded by a grant from the Bill and Melinda Gates Foundation Grand Challenges in Global Health Initiative. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulukani Mlalazi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 122 kb)

425_2012_1717_MOESM2_ESM.jpg

Supplemental Fig. 2. Alignment of banana PSY partial protein sequences. Neighbour joining multiple sequence alignment of banana PSY1 and PSY2 partial protein sequences translated from the partial nucleotide sequences used in Fig. 1 (Table S3) and Cavendish PSY2b (Ma-PSY2b; GenBank Accession No. JX195666) (JPEG 1515 kb)

425_2012_1717_MOESM3_ESM.jpg

Supplemental Fig. 3. Comparative structure of PSY mRNA and genomic DNA sequences from Asupina and Cavendish cultivars. (a) Structure of putative Asupina (A) and Cavendish (Ma) PSY mRNA transcripts showing the coding region (black rectangle) between the start (AUG) and stop (UGA or UAA) codons of A-PSY1 (GenBank Accession No. JX195658), A-PSY2a (GenBank Accession No. JX195659), Ma-PSY1 (GenBank Accession No. JX195664) and Ma-PSY2a (GenBank Accession No. JX195665). Putative transcription initiation (t) and polyadenylation (*) sites are marked on the 5’ and 3’ UTRs (grey arrows), respectively. (b) Analysis of genomic sequences of Asupina and Cavendish PSY genes. Diagrammatic representation of the structure of the genomic sequences corresponding to the coding region (between the start and stop codons) of Asupina and Cavendish PSY genes A-PSY1 (GenBank Accession No. JX195661), A-PSY2a (GenBank Accession No. JX195660), Ma-PSY1 (GenBank Accession No. JX195663) and Ma-PSY2a (GenBank Accession No. JX195662) compared to that of maize (Zm) PSY1 (GenBank Accession No. AY324431.1) and PSY2 (GenBank Accession No. AY325302.1) showing the positions of the exons (black arrows) and introns (grey lines). The sizes (bp) of the exons (bold numbers) and introns (plain numbers) are shown above and below the coding region of each gene (JPEG 768 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mlalazi, B., Welsch, R., Namanya, P. et al. Isolation and functional characterisation of banana phytoene synthase genes as potential cisgenes. Planta 236, 1585–1598 (2012). https://doi.org/10.1007/s00425-012-1717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1717-8

Keywords

Navigation