Skip to main content
Log in

Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Immunolabeling can be used to locate plant cell wall carbohydrates or other components to specific cell types or to specific regions of the wall. Some antibodies against xylans exist; however, many partly react with the xylan backbone and thus provide limited information on the type of substituents present in various xylans. We have produced a monoclonal antibody which specifically recognizes glucopyranosyl uronic acid (GlcA), or its 4-O-methyl ether (meGlcA), substituents in xylan and has no cross-reactivity with linear or arabinofuranosyl-substituted xylans. The UX1 antibody binds most strongly to (me)GlcA substitutions at the non-reducing ends of xylan chains, but has a low cross-reactivity with internal substitutions as well, at least on oligosaccharides. The antibody labeled plant cell walls from both mono- and dicotyledons, but in most tissues an alkaline pretreatment was needed for antibody binding. The treatment removed acetyl groups from xylan, indicating that the vicinity of glucuronic acid substituents is also acetylated. The novel labeling patterns observed in the xylem of tree species suggested that differences within the cell wall exist both in acetylation degree and in glucuronic acid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A2XX:

α-l-Araf-(1→2)-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl

A3X:

α-l-Araf-(1→3)-β-d-Xylp-(1→4)-d-Xyl

Ad2+3XX:

α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl

Ara:

Arabinofuranosyl

BSA:

Bovine serum albumin

BTP:

1 % BSA + 0.05 % Tween-20 in PB

CBM:

Carbohydrate binding module

DQF-COSY:

Double-quantum filtered correlated NMR spectroscopy

ELISA:

Enzyme-linked immunosorbent assay

GH:

Glycoside hydrolase family

GlcA:

Glucopyranosyl uronic acid

HexA:

4-Deoxy-β-l- threo-hex-4-enopyranosyluronic acid

HPAEC-PAD:

High performance anion exchange chromatography with pulsed amperometric detection

HSQC:

Heteronuclear single quantum correlation NMR spectroscopy

IC50 :

Concentration of inhibitor causing 50 % inhibition

meGlcA:

4-O-methylglucopyranosyl uronic acid

meIdoA:

4-O-methyl-α-l-idopyranosyluronic acid

NMR:

Nuclear magnetic resonance

PB:

0.1 M Sodium phosphate buffer pH 7.2

TLC:

Thin layer chromatography

U4m2X:

4-O-methyl-α-d-GlcpA-(1→2)-β-d-Xylp-(1→4)-d-Xyl

U4m2XX:

4-O-methyl-α-d-GlcpA-(1→2)-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl

UXX:

α-d-GlcpA-(1→2)-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl

XA3X:

β-d-Xylp-(1→4)-[α-l-Araf-(1→3)]-β-d-Xylp-(1→4)-d-Xyl

XAd2+3XX:

β-d-Xylp-(1→4)-[α-l-Araf-(1→2)][α-l-Araf-(1→3)]-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl

XOS:

Xylooligosaccharide

XU4m2X:

β-d-Xylp-(1→4)-[4-O-methyl-α-d-GlcpA-(1→2)]-β-d-Xylp-(1→4)-d-Xyl

XU4m2XX:

β-d-Xylp-(1→4)-[4-O-methyl-α-d-GlcpA-(1→2)]-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl

Xylp :

Xylopyranosyl

References

  • Al-Assaf S, Phillips GO, Amar V (2009) Gum ghatti. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, 2nd edn. Woodhead Publishing, Cambridge, pp 477–494

    Chapter  Google Scholar 

  • Arend M (2008) Immunolocalization of (1,4)-β-galactan in tension wood fibers of poplars. Tree Physiol 28:1263–1267

    Article  PubMed  CAS  Google Scholar 

  • Aspinall GO (1959) Structural chemistry of the hemicelluloses. Adv Carbohydr Chem 14:429–468

    Article  PubMed  CAS  Google Scholar 

  • Aspinall GO (1980) Chemistry of cell wall polysaccharides. In: Preiss J (ed) The biochemistry of plants, vol 3. Academic Press, New York, pp 473–500

    Google Scholar 

  • Bacon JSD, Gordon AH, Morris EJ, Farmer VC (1975) Acetyl groups in cell-wall preparations from higher plants. Biochem J 149:485–487

    PubMed  CAS  Google Scholar 

  • Biely P, Vršanská M, Tenkanen M, Kluepfel D (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Wightman R, Zhang Z, Gomez LD, Atanassov I, Bukowski J, Tryfona T, McQueen-Mason SJ, Dupree P, Turner S (2011) Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J 66:401–413

    Article  PubMed  CAS  Google Scholar 

  • Cavagna F, Deger H, Puls J (1984) 2D-N.M.R. analysis of the structure of an aldotriouronic acid obtained from birch wood. Carbohydr Res 129:1–8

    Article  CAS  Google Scholar 

  • Chong SL, Battaglia E, Coutinho PM, Henrissat B, Tenkanen M, de Vries RP (2011) The α-glucuronidase Agu1 from Schizophyllum commune is a member of a novel glycoside hydrolase family (GH115). Appl Microbiol Biotechnol 90:1323–1332

    Article  PubMed  CAS  Google Scholar 

  • Christov L, Biely P, Kalogeris E, Christakopoulos P, Prior BA, Bhat MK (2000) Effects of purified endo-β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J Biotechnol 83:231–244

    Article  PubMed  CAS  Google Scholar 

  • Clausen MH, Willats WGT, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338:1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Evtuguin D, Tomás J, Silva AS, Neto C (2003) Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohydr Res 338:597–604

    Article  PubMed  CAS  Google Scholar 

  • Fauré R, Courtin CM, Delcour JA, Dumon C, Faulds CB, Fincher GB, Fort S, Fry SC, Halila S, Kabel MA, Pouvreau, Quemener B, Rivet A, Saulnier L, Schols HA, Driquez H, O′Donohue MJ (2009) A brief and informationally rich naming system for oligosaccharide motifs of heteroxylans found in plant cell walls. Aust J Chem 62:1–5

    Article  Google Scholar 

  • Guillon F, Tranquet O, Quillien L, Utille J, Ordaz-Ortiz JJ, Saulnier L (2004) Generation of polyclonal and monoclonal antibodies against arabinoxylans and their use for immunocytochemical location of arabinoxylans in cell walls of endosperm of wheat. J Cereal Sci 40:167–182

    Article  CAS  Google Scholar 

  • Jensen JK, Kim H, Cocuron J, Orler R, Ralph J, Wilkerson CG (2011) The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J 66:387–400

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-d-galactan. Plant Physiol 113:1405–1412

    PubMed  CAS  Google Scholar 

  • Knox JP (2008) Revealing the structural and functional diversity of plant cell walls. Curr Opin Plant Biol 11:308–313

    Article  PubMed  CAS  Google Scholar 

  • Komiyama H, Enomoto A, Sueyoshi Y, Nishio T, Kato A, Ishii T, Shimizu K (2009) Structures of aldouronic acids liberated from kenaf xylan by endoxylanases from Streptomyces sp. Carboh Polym 75:521–527

    Article  CAS  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089

    Article  PubMed  CAS  Google Scholar 

  • López-Franco Y, Higuera-Ciapara I, Goycoolea F, Wang W (2009) Other exudates: tragancanth, karaya, mesquite gum and larchwood arabinogalactan. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, 2nd edn. Woodhead Publishing, Cambridge, pp 496–534

    Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546

    Article  PubMed  CAS  Google Scholar 

  • McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. PNAS 103(12):4765–4770

    Article  PubMed  CAS  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    Article  PubMed  CAS  Google Scholar 

  • Moller I, Marcus SE, Haeger A, Verhertbruggen Y, Verhoef R, Schols H, Ulvskov P, Mikkelsen JD, Knox JP, Willats W (2008) High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj J 25:37–48

    Article  PubMed  CAS  Google Scholar 

  • Naran R, Black S, Decker SR, Azadi P (2009) Extraction and characterization of native heteroxylans from delignified corn stover and aspen. Cellulose (Dordrecht, Neth) 16:661–675

    CAS  Google Scholar 

  • Ordaz-Ortiz JJ, Guillon F, Tranquet O, Dervilly-Pinel G, Tran V, Saulnier L (2004) Specificity of monoclonal antibodies generated against arabinoxylans of cereal grains. Carbohydr Polym 57:425–433

    Article  CAS  Google Scholar 

  • Pastell H, Tuomainen P, Virkki L, Tenkanen M (2008) Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. Carbohydr Res 343:3049–3057

    Article  PubMed  CAS  Google Scholar 

  • Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O’Shea B, Rossi R, Leoff C, Freshour G, Narra R, O’Neil M, York WS, Hahn MG (2010) A comprehensive toolkit of plant cell wall-directed monoclonal antibodies. Plant Physiol 153:514–525

    Article  PubMed  CAS  Google Scholar 

  • Peña MJ, Zhong R, Zhou G, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye Z (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    Article  PubMed  Google Scholar 

  • Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C (2007) The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19:237–255

    Article  PubMed  CAS  Google Scholar 

  • Pitkänen L, Virkki L, Tenkanen M, Tuomainen P (2009) Comprehensive multidetector HPSEC study on solution properties of cereal arabinoxylans in aqueous and DMSO solutions. Biomacromolecules 10:1962–1969

    Article  PubMed  Google Scholar 

  • Poutanen K, Sundberg M, Korte H, Puls J (1990) Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl Microbiol Biotechnol 33:506–510

    Article  CAS  Google Scholar 

  • Puchart V, Biely P (2008) Simultaneous production of endo-β-1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus. J Biotechnol 137:34–43

    Article  PubMed  CAS  Google Scholar 

  • Rantanen H, Virkki L, Tuomainen P, Kabel M, Schols H, Tenkanen M (2007) Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-β-d-xylanase. Carbohydr Polym 68:350–359

    Article  CAS  Google Scholar 

  • Roy R, Katzenellenbogen E, Jennings HJ (1984) Improved procedures for the conjugation of oligosaccharides to protein by reductive amination. Can J Biochem Cell Biol 62:270–275

    Article  PubMed  CAS  Google Scholar 

  • Saulnier L, Vigouroux J, Thibault J (1995) Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272:241–253

    Article  PubMed  CAS  Google Scholar 

  • St. John FJ, Rice JD, Preston JF (2006) Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J Bacteriol 188:8617–8626

    Article  PubMed  CAS  Google Scholar 

  • St. John FJ, González JM, Pozharski E (2010) Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett 584:4435–4441

    Article  PubMed  CAS  Google Scholar 

  • Sully P, Tranquet O, Utille JP, Saulnier L, Guillon F (2007) Investigation of ferulate deposition in endosperm cell walls of mature and developing wheat grains by using a polyclonal antibody. Planta 225:1287–1299

    Article  Google Scholar 

  • Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibers by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11:216–219

    Article  CAS  Google Scholar 

  • Teleman A, Harjunpää V, Tenkanen M, Buchert J, Hausalo T, Drakenberg T, Vuorinen T (1995) Characterisation of 4-deoxy-β-l-threo-hex-4-enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and 13C NMR spectroscopy. Carbohydr Res 272:55–71

    Article  PubMed  CAS  Google Scholar 

  • Teleman A, Siika-aho M, Sorsa H, Buchert J, Perttula M, Hausalo T, Tenkanen M (1996) 4-O-Methyl-α-l-idopyranosyluronic acid linked to xylan from kraft pulp: isolation procedure and characterisation by NMR spectroscopy. Carbohydr Res 293:1–13

    Article  PubMed  CAS  Google Scholar 

  • Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815

    Article  PubMed  CAS  Google Scholar 

  • Tenkanen M, Siika-aho M (2000) An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 78:149–161

    Article  PubMed  CAS  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  CAS  Google Scholar 

  • Tranquet O, Saulnier L, Utille JP, Ralph J, Guillon F (2009) Monoclonal antibodies to p-coumarate. Phytochemistry 70:1366–1373

    Article  PubMed  CAS  Google Scholar 

  • Virkki L, Maina HN, Johansson L, Tenkanen M (2008) New enzyme-based method for analysis of water-soluble wheat arabinoxylans. Carbohydr Res 343:521–529

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Academy of Finland (Grant number 124281) and Institut National de la Recherche Agronomique (INRA), France, through EU ERA-Net programme WoodWisdom-Net2 (HemiPop project). S. Koutaniemi thanks COST action 928 for funding the visits to INRA Nantes, France, and Nordforsk for funding the visit to University of Copenhagen, Denmark. Valuable samples were donated by Brigitte Chabbert, Dmitry Evtuguin, Grégory Mouille, Gilles Pilate, James F. Preston, Jürgen Puls, Bodo Saake, Kazumasa Shimizu and Matti Siika-aho. The authors wish to thank Miikka Olin, Valerie Echasserieau and Laurent Helary for their help, as well as Ewa Mellerowicz and Alexandra Fagerström for discussions and comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Koutaniemi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (PDF 15 kb)

Online Resource 2 (PDF 97 kb)

Online Resource 3 (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutaniemi, S., Guillon, F., Tranquet, O. et al. Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species. Planta 236, 739–751 (2012). https://doi.org/10.1007/s00425-012-1653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1653-7

Keywords

Navigation