Skip to main content
Log in

A novel, semi-dominant allele of MONOPTEROS provides insight into leaf initiation and vein pattern formation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Leaf vein pattern is proposed to be specified by directional auxin transport through presumptive vein cells. Activation of auxin response, which induces downstream genes that entrain auxin transport and lead to vascular differentiation, occurs through a set of transcription factors, the auxin response factors. In the absence of auxin, auxin response factors are inactive because they interact with repressor proteins, the Aux/IAA proteins. One member of the auxin response factor protein family, Auxin Response Factor 5/MONOPTEROS (MP), is critical to vein formation as indicated by reduced vein formation in loss-of-function MP alleles. We have identified a semi-dominant, gain-of-function allele of MP, autobahn or mp abn, which results in vein proliferation in leaves and cotyledons. mp abn is predicted to encode a truncated product that lacks domain IV required for interaction with its Aux/IAA repressor BODENLOS (BDL). We show that the truncated product fails to interact with BDL in yeast two-hybrid assays. Ectopic expression of MP targets including the auxin efflux protein PINFORMED1 (PIN1) further supports the irrepressible nature of mp abn. Asymmetric PIN1:GFP cellular localization does not occur within the enlarged PIN1:GFP expression domains, suggesting the asymmetry requires differential auxin response in neighbouring cells. Organ initiation from mp abn meristems is altered, consistent with disruption to source/sink relationships within the meristem and possible changes in gene expression. Finally, mp abn anthers fail to dehisce and their indehiscence can be relieved by jasmonic acid treatment, suggesting a specific role for MP in late anther development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

abn :

autobahn

AP1 :

APETALA1

AP3 :

APETALA3

ARF:

Auxin response factor

ARF5:

AUXIN RESPONSE FACTOR 5

ATHB8 :

ARABIDOPSIS THALIANA HOMEOBOX 8

Aux/IAA:

Auxin/indole-3-acetic acid

BDL :

BODENLOS (also known as IAA12)

BP :

BREVIPEDICELLUS

Col:

Columbia accession

CUC2:

CUP-SHAPED COTYLEDON 2

DAG:

Days after germination

DR5:GUS :

Direct repeat of 5 auxin response elements fused to GUS

FEV:

Freely ending veins

GAL4 :

GALACTOSE4

GAL4-DB:

GAL4-DNA binding domain

GAL4-TA:

GAL4 transcription activation domain

gl1-1 :

glabrous1-1

GFP:

Green fluorescent protein

GUS :

β -glucuronidase

IAA12:

Indole-3-acetic acid 12

IAA13:

Indole-3-acetic acid 13

JA:

Jasmonic acid

KNOX :

KNOTTED-LIKE HOMEOBOX

Ler:

Landsberg erecta accession

LFY :

LEAFY

MP :

MONOPTEROS (also known as ARF5)

NOA:

1-Naphthoxyacetic acid

NPA:

Naphthylphthalamic acid

NPH4:

NON-PHOTOTROPHIC HYPOCOTYL 4

PID :

PINOID

PIN1 :

PINFORMED1

SEM:

Scanning electron microscopy

SHR :

SHORTROOT

STM :

SHOOT MERISTEMLESS

References

  • Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249–256

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y-S, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  PubMed  CAS  Google Scholar 

  • Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics: a Cold Spring Harbor laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037

    Article  PubMed  CAS  Google Scholar 

  • Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182

    PubMed  CAS  Google Scholar 

  • Bainbridge K, Guyomarc’h S, Bayer E, Swarup R, Bennett M, Mandel T, Kuhlemeier C (2008) Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22:810–823

    Article  PubMed  CAS  Google Scholar 

  • Bartel P, Chien CT, Sternglanz R, Fields S (1993) Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14:920–924

    PubMed  CAS  Google Scholar 

  • Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M, Prusinkiewicz P, Kuhlemeier C (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 23:373–384

    Article  PubMed  CAS  Google Scholar 

  • Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067

    PubMed  CAS  Google Scholar 

  • Berleth T, Jurgens G (1993) The role of the MONOPTEROS gene in organizing the basal body region of the Arabidopsis embryo. Development 118:575–587

    Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  PubMed  CAS  Google Scholar 

  • Crawford BCW, Yanofsky MF (2011) HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 138:2999–3009

    Article  PubMed  CAS  Google Scholar 

  • Dhondt S, Coppens F, De Winter F, Swarup K, Merks RMH, Inzé D, Bennett MJ, Beemster GTS (2010) SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-Phase progression of the cell cycle. Plant Physiol 154:1183–1195

    Article  PubMed  CAS  Google Scholar 

  • Donner TJ, Sherr I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136:3235–3246

    Article  PubMed  CAS  Google Scholar 

  • Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  CAS  Google Scholar 

  • Gardiner J, Donner TJ, Scarpella E (2011) Simultaneous activation of SHR and ATHB8 expression defines switch to preprocambial cell state in Arabidopsis leaf development. Dev Dyn 240:261–270

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18:1873–1886

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  PubMed  CAS  Google Scholar 

  • Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395

    PubMed  CAS  Google Scholar 

  • Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Tsiantis M (2010) KNOX genes: versatile regulators of plant development and diversity. Development 137:3153–3165

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Barkoulas M, Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133:3955–3961

    Article  PubMed  CAS  Google Scholar 

  • Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jönsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8:e1000516

    Article  PubMed  Google Scholar 

  • Hou H, Erickson J, Meservy J, Schultz EA (2010) FORKED1 encodes a PH domain protein that is required for PIN1 localization in developing leaf veins. Plant J 63:960–973

    Article  PubMed  CAS  Google Scholar 

  • Imhoff V, Muller P, Guern J, Delbarre A (1999) Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells. Planta 210:580–588

    Article  Google Scholar 

  • Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Article  PubMed  CAS  Google Scholar 

  • Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638

    Article  PubMed  Google Scholar 

  • Kang J, Dengler N (2002) Cell cycling frequency and expression of the homeobox gene ATHB-8 during leaf vein development in Arabidopsis. Planta 216:212–219

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791

    Article  PubMed  CAS  Google Scholar 

  • Kohalmi SE, Nowak J, Crosby WL (1997) A practical guide to using the yeast 2-hybrid system. In: Differentially expressed Genes in Plants: a Bench Manual. Taylor & Francis, London, pp 63–82

  • Kohalmi SE, Reader LJV, Samach A, Nowak J, Haughn GW, Crosby WL (1998) Identification and characterization of protein interactions using the yeast 2-hybrid system. Plant Mol Biol Man M1:1–30

    Google Scholar 

  • Lau S, De Smet I, Kolb M, Meinhardt H, Jurgens G (2011) Auxin triggers a genetic switch. Nat Cell Biol 13:U611–U249

    Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  PubMed  CAS  Google Scholar 

  • Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, PaYezová M, Petráaek J, Friml J, Kleine-Vehn J, Benková E (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804

    Article  PubMed  Google Scholar 

  • Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991

    PubMed  CAS  Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Mundermann L, Erasmus Y, Lane B, Coen E, Prusinkiewicz P (2005) Quantitative modeling of Arabidopsis development. Plant Physiol 139:960–968

    Article  PubMed  CAS  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    PubMed  CAS  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    Article  PubMed  CAS  Google Scholar 

  • Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406

    Article  PubMed  CAS  Google Scholar 

  • Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  PubMed  CAS  Google Scholar 

  • Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–237

    Article  PubMed  CAS  Google Scholar 

  • Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D (2011) A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J 68:597–606

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  PubMed  CAS  Google Scholar 

  • Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Article  Google Scholar 

  • Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911

    Article  PubMed  CAS  Google Scholar 

  • Sawchuk MG, Donner TJ, Scarpella E (2008) Auxin transport-dependent, stage-specific dynamics of leaf vein formation. Plant Signal Behav 3:286–289

    Article  PubMed  Google Scholar 

  • Scarpella E, Francis P, Berleth T (2004) Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation. Development 131:3445–3455

    Article  PubMed  CAS  Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    Article  PubMed  CAS  Google Scholar 

  • Schuetz M, Berleth T, Mattsson J (2008) Multiple MONOPTEROS-dependent pathways are involved in leaf initiation. Plant Physiol 148:870–880

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124:4481–4491

    PubMed  CAS  Google Scholar 

  • Sieburth LE (1999) Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121:1179–1190

    Article  PubMed  CAS  Google Scholar 

  • Steynen QJ, Schultz EA (2003) The FORKED genes are essential for distal vein meeting in Arabidopsis. Development 130:4695–4708

    Article  PubMed  CAS  Google Scholar 

  • Steynen QJ, Bolokoski DA, Schultz EA (2001) Alteration in flowering time causes accelerated or decelerated progression through Arabidopsis vegetative phases. Can J Bot 79:657–665

    Google Scholar 

  • Stieger PA, Reinhardt D, Kuhlemeier C (2002) The auxin influx carrier is essential for correct leaf positioning. Plant J 32:509–517

    Article  PubMed  CAS  Google Scholar 

  • Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX Genes. Plant Cell Physiol 51:164–175

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  PubMed  CAS  Google Scholar 

  • Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J (2000) PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127:5157–5165

    PubMed  CAS  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guedon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:15

    Article  Google Scholar 

  • Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jurgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885

    Article  PubMed  CAS  Google Scholar 

  • Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jurgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270

    Article  PubMed  CAS  Google Scholar 

  • Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49:387–398

    Article  PubMed  CAS  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Arabidopsis Biological Resource Center (Columbus, Ohio), Thomas Berleth (University of Toronto, Toronto, ON), George Haughn (Department of Botany, University of British Columbia, Vancouver, BC), Gerd Jürgens (Eberhard-Karls Universität, Tübingen) Giorgio Morelli (Istituto Nazionale della Nutrizione, Rome) and Jane Murfet (University of Missouri, Columbia, MO) for seed donations. This work was funded by a Discovery Grant (E.S.), Post-Graduate Scholarships-Masters (J.J.G.) and Undergraduate Summer Research Awards (M.M., M.B., L.B.) from the Natural Science and Engineering Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Schultz.

Additional information

M. T. Blackshaw and L. C. Blackshaw contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrett, J.J.T., Meents, M.J., Blackshaw, M.T. et al. A novel, semi-dominant allele of MONOPTEROS provides insight into leaf initiation and vein pattern formation. Planta 236, 297–312 (2012). https://doi.org/10.1007/s00425-012-1607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1607-0

Keywords

Navigation